
.. .. WHOI-88-15

Lf)

Al~

Surfce:Wve DttAqustionan'Dseiatnw:
Vi-

~by~HJ~9C A
CoX"I!Ntwkii\~

X ;i GA *~-

I -Yli 8 1988 a

a n 'C dim p- uct Nube N e'b4-88-K-0751 in

4* L 4;i1. " ~ - ~ # j ~L - '- I T~ II ill"}z lk 2.
i" 4 aI

:77.

WHOI-88-15

Surface-Wave Data Acquisition and Dissemination by VHF
Packet Radio and Computer Networking

by

M. Briscoe, E. Denton, D. Frye,
M. Hunt, E. Montgomery, and R. Payne

Woods Hole Oceanographic Institution
Woods Hole, Massachusetts 02543

April 1988

Technical Report

Funding was provided by the Office of Naval Research
through contract Number N00014-86-K-0715 under the

University Research Initiative Program.

Reproduction in whole or in part is permitted for any purpose of the
United States Government. This report should be cited as:

Woods Hole Oceanog. Inst. Tech. Rept., WHOI-88-15. "

Approved for publication; distribution unlimited.

Approved for Distribution:

Robert C. Beardsley, ChairmanI
Department of Physical Oceanography

Contents

List of Figures 4

1 Abstract 5

2 Overview 6

2.1 Purpose of Project 6

2.2 Options, and Selection of Methods 6

2.3 Overall System Description 7

2.4 Data Example 14

3 Waverider Buoy and Mooring 16

4 Relay Station 20

4.1 Description of the Van and Equipment 20

4.2 Site Considerations and Permissions22

4.3 Installation and Checkout 23

5 Base Station 25

5.1 Laboratory Equipment 25

5.2 Installation and Checkout 26

5.3 Troubleshooting Link Problems 26

6 Data 28

6.1 Data Acquistion and Processing 28

6.2 Error and Malfunction Handling 30

6.3 File Storage and Handling 31

6.4 Data Dissemination 32

6.5 Routine monitoring 33

2

6.6 Lessons 33

7 Summary 35

7.1 Unanticipated Problems 35

7.2 Scientific and Technical Extensions 36

7.3 Conclusions 37

8 References 38

Appendices 39

A. Gay Head Relay Van 39

A.1 PL1000 Digitizer Program 39

A.2 TNC Parameters (Relay and Base) 40

A.3 PL1000 Clock Reset Instructions 42

B. Base Station 43

B.1 WRPROC Program Report 43

B.2 Sample Summary and Spectral Coefficient Files 52

B.3 Sample Printer Output: 54

B.4 Program .. 55

C. Management 95

C.1 FILMAN.COM Program Report 95

C.2 Program .. 97

C.3 Log File From FILMAN.COM 98

D. Data Dissemination i00

D.1 TELECHUZ Program Report 100

D.2 Sample TELECHUZ Session 102 Wi_

Wki
_vM

3

D.3 Program 105

DTIC

Ji t /

Codes

-l/ or

4

List of Figures

1. Chart of Woods Hole area, showing transmission paths 7

2. Schematic of waverider data acquisition system 9

3. D ata form at ... 10

4. Sample plot of data telemetered from the waverider 14

5. Cut-away diagram of a waverider Buoy 16

6. Photographs of Waverider with modifications 17

7. Mooring diagram for waverider at the buoy farm 18

S. Photograph of the Gayhead relay station 20

9. Schematic of Data handling system 28

OI

I

1 Abstract

Waverider buoy data are normally transmitted on a 27 MHz analog radio link to
a shore statiou a few miles away, where the buoy data axe plotted on a paper
strip-chart recorder or logged digitally for later computer proccssing.

Instead, we have constructed a relay station on Martha's Vineyard island that
retransmits the received Waverider data over a digital, 148 MHz packet-radio link
to a personal computer in our laboratory on Cape Cod, where the data are edited,
processed, spectrally analyzed, and then sent over an Ethernet line to our Institution
mainframe computer for archiving. Telephone modem access of a special wave-data
file on the mainframe permits unattended data dissemination to the public.

The report describes the entire system, including Waverider buoy mooring
hardware, computer programs, and equipment.

The purpose of the project was to learn what difficulties are involved in the
automated acquisition and dissemination of telemetered oceanographic data, and
to gain experience with packet radio techniques. Although secondary to these pur-
poses, the long-term surface-wave monitoring off the southwest shore of Martha's
Vineyard has its own scientific, engineering, and environmental benefits.

, p

6

2 Overview

2.1 Purpose of Project

Under the University Research Initiative Program at Woods Hole Oceanographic
Institution, a general goal of the Telemetry Project is to develop techniques to
gather in situ data from the ocean and to disseminate them to users in a timely
and efficient way. Since there has been very little experience in this task in the
oceanographic community, we constructed this project to gain experience.

In particular, we wished to acquire incoming telemetered data, edit them, pro-
cess them as appropriate, archive the raw data or some reduced form of them, and
make the data available to users. In this context, it made no difference what the
incoming data might be, since the data were just something to be handled and
disseminated. However, since we wished if possible in this demonstation project to
have the users of the data be the public - so as to have a broad interest base rather
than a restricted audience - we judged that surface wave data from nearby waters
might be a good data source. In retrospect, we might have had even more public
interest in the data if they had provided real-time access to offshore winds in either
popular sailing or wind-surfing areas. Additionally, the surface wave data provided
engineering support information to other tests at the wave-buoy mooring site.

Ii
In addition to the goal of learning about the problems involved in dealing

with real-time data, their processing, and their dissemination, we were at the same
time investigating the possible utility of packet radio techniques for the error-free
digital transmission of oceanographic data. As in all data acquisition projects, our
experience has been that most of the time spent processing data is devoted to the
small fraction of bad data, that is, missing data points and incorrect values. The
minimization of this problem by using packet radio was attractive.

Consequently, the wave-data project was designed to provide an incoming data
stream of surface wave data from a Waverider buoy moored offshore, with part of
the telemetry link using packet radio.

2.2 Options, and Selection of Methods

The Waverider buoy (see section 2.0) is a simple to use, reliable device for the
measurement of surface wave displacements; it is readily moored in water of modest
depths (20 m is very easy, 200 m is quite possible, 2000 m is quite difficult). Its
major disadvantages are its analog AM radio link on 27 MHz, which is a modulation
scheme and frequency band subject to considerable interference, and its limited
telemetry range, which is some 50 km in the very best of conditions, but which is
typically 10-20 km in most applications.

7

The waters in the vicinity of Woods Hole, Massachusetts, (Figure 1) are pop- S

ular sport-boating and commercial fishing waters; experience with the long-term
survivability of moored buoys, even navigational buoys, is not good. However, the
Ocean Engineering Department of the Institution has maintained for some years a
site called the "Buoy Farm," which is an engineering test site about 16 km southwest
of Martha's Vineyard Island, in 42 m deep water. The Buoy Farm is marked with
corner buoys carrying lights and radar reflectors, and is marked on navigational
charts of the area. Various mooring, instrument, and materials tests are conducted
at the Farm on a regular basis, so it is not much effort to get there for deploying
small moorings and for inspection trips. As a side benefit, our wave measurements
at the Buoy Farm are in direct support of the engineering tests there.

Unfortunately, the Buoy Farm is about 44 km from our laboratories in Woods 5
Hole, so the direct 27 MHz transmissions from the Waverider buoy would not often
be received successfully. The closest land to the Buoy Farm, about 18 km away, is
the Gay Head section of Martha's Vineyard, which also has the advantage of being
45 m above sea level, so an antenna site there provides the best reception possible
of the Waverider signal. S

From Martha's Vineyard the immediate options to get the data to Woods Hole,
about 26 km away, were by another analog radio link, by telephone line, or by the
digital packet-radio link that we wanted to test anyway. The packet radio link
was selected. The frequency used (148.450 MHz) was fortuitious, for it allowed the
use of an experimental frequency already allocated to Woods Hole Oceanographic
Institution for work near Martha's Vineyard, and it allowed the use of inexpensive
and easily available amateur radio equipment normally used on the 144-148 MHz
band.

The remaining consideration was the relay station on Martha's Vineyard, some-
where in the Gay Head area. The station would have to receive the Waverider sig-
nal, demodulate and digitize it for input (as ASCII) to the packet radio system, and
transmit the digital data to Woods Hole. The relay station would have to include
sufficient intelligence to know when to sample the data and then either transmit it
at certain times, or wait for an interrogation request from the base station at Woods
Hole. We elected to transmit at certain times, so as to put some stress on the base S

station. If effect, we were more comfortable with our capability to interrogate from
the base station, so we chose the timed transmissions as the method that would "I

teach us the most. "?

2.3 Overall System Description

Details of the Waverider buoy and its mooring, the relay station on Martha's Vine-
yard, the base station in Woods Hole, and the data handling procedures are in the
following sections. Here, the overall system description is given.

wv~vvw% ywiS

74,lm uh

Clark Laboratory

410 30' itYrSon

,pMartha's .4

41020'

Buoy
Farm

410 10' N *

Figure 1: Chart of the area near Woods Hole Massachusetts, Showing the to
cation of the moored Waverider Iuoy at the "Buioy Farm," the relay stationl 011
Martha's Vineynrd, andl the Woods Hole Oceanographic Institution Clark Lahorn
tory in Woods Hole.

9 i

Figure 2 shows the overall system. The Waverider is a commercial system that
has been modified to include a satellite location-transmitter (ARGOS) in case it
should drift away (see section 2.0). The relay station (configured with the iden-
tification GAYHD) and the base station (configured as WHOI-1) contain mostly
commercial components assembled to our specifications and using our programs.
The packet radio part of the system, which includes the ICOM transceivers (see
sections 3.0 and 4.0) and the Terminal Node Controllers (TNC), is assembled from
standard, unmodified amateur radio equipment.

From Buoy to Martha's Vineyard

The Waverider buoy transmits continuo isly on 27.595 MHz. The N.B.A. Controls
WCR-1 receiving system in the relay station continuously outputs a slowing varying
DC signal, -5 to +5 volts, corresponding to -5 to +5 meters of wave displacement.
The Elexor PL1000 in the relay station is programmed (see appendix A.1) digitize
2048 12-bit samples (2 samples per second) beginning at 21 minutes and 28 seconds
after each hour, and again at 51 minutes and 28 seconds after each hour. That is,
1024 seconds of wave data (17 minutes, 4 seconds) are logged during an interval
centered on the even hour and the even half-hour. The timing is based on an
internal real-time clock in the PL1000, about which more will be said later. The
12-bit digitizer allows the data to cover the range -4.096 to +4.096 m. The 2048
data points are stored in the PL1000 buffer along with a 2049th word, which is
the digitized output from a (nominally) 3.2 volt DC power supply plugged into the
main li0VAC power strip in the relay station; this is a monitor of the status of the
power to the relay van. Immediately upon completion uf this sampling, the PL1000
begins to send formatted ASCII to the MFJ 1270 Terminal Node Controller (TNC).

Data Format for Transmission

The data are formatted as a modification of the drifting buoy (DRIBU) format, used
by the World Meteorological Organization and tranmitted routinely over the Global I
Telecommunications System (GTS). The principal modification is that surface wave
data are not part of the DRIBU format, nor of any WMO format. Otherwise, the
message is as would normally appear on the GTS; its details are given in Figure 3.
The principal advantage of using this modified DRIBU format is that all necessary
information (date, time, location, etc.) is included, and is easily extracted without
special decoding; the disadvantage is that the format is not an efficient way to
transmit the 2049 data points.

Error-Detection

The TNC has a 14 kbyte buffer that will hold the entire wave record plus header
and footer. As set up (see Appendix A2), the TNC breaks the record into 128 %
characters per packet (PACLEN 128).

S. * % - %~ ~ '' '. .~ ~ - .(1

10

27 MHz 27 MHz 148 MHz
"X nalog)

(digita I!

-aeae Relay Station at Gay HeadW a v e r id e r- - - - - - - - - - - - - - -

Buoy F tT
-

W/R +5 VOC Elexor RS232 Speaker

Receiver 5 o PlO00 1200 baud MFJ ICOM
4T~udia TNCMike 2

I Gel Cells Gel Cells 12 V 12 V
220 VAC t

from -10 VA Stablyx
Lighthouse 10 VA SR'1O

12 VSC ioneGel Cell Decoder
and and

Charger 2 Timer

L
148 MHz

Fge2Sigtalt Base Station in Clark 308
SClark Roof

d a e ICOM l PTT ion o MFJ a '1200 baud Zenith dgallel Epsoni
i t H s i e TNC copuePC Printeroes

i ,nPlow T~opaz <I1

link, he bas statin in oods Hle, th comp ther netwokn oVtAXroese

-17540600
data, and the telephone modem connection for public access to the data.

DATA FORMAT FOR VHF PACKET LINK 11

line no.
1 ZCZC nnn
2 MMNT KMVY ddhhmm
3 ZZXX ddMMY hhmm/ 74116 07102
4 999
5 SJWVW SWWWJ SUWWw SWWWW SWWWW SWWWW SWWWW SWWWW
- suUuU SUVu Swuu SVWWW SUWWUj SwUW Sli"u vuwu

260 SWWWW SWWWW SWWWW SWWWW SWWWW SWWWW SWWWW SWWWW
261 333 44185 61616 8VVVV 69696=
262 NNNN

line no.
I ZCZC starting signal for a GTS msg

nnn message sequence number, 000 to 999 (may reset to 000)
2 MM addressed message (not for global distribution)

NT message from North Atlantic area
K United States
MVY Martha's Vineyard
ddhhmm day, hour, minute of transmission of message

3 ZZXX starting signal for DRIBU format
ddMMY day, month, last digit of year of data observation
hhmm/ hour, minute of data observation; / is block filler
7 quadrant of data location (North. West)
4116 41016'
07102 71002'

4 999 starting signal for wave data time series
5 S + or -

WWWW wave heicht in millimeters; 8 data words per line
6 same as line 5; 256 data lines

260 same as line 5; 2048 data words total (0.5 s samples)
261 333 starting signal for remaining information

44 WMO Northwestern Atlantic Ocean area
185 Waverider ID (buoy serial number is 68185)
61616 starting group for additional information
8 indicator for engineering data
VVVV remote station voltage indicator (millivolts)
69696 ending group for additional information
= ending indicator for DRIBU format

262 NNNN ending signal for GTS message

DATA SAMPLING AND TRANSMISSION SCHEDULE

once each minute: WHOI-l polls GAYHD to check the connect status and GAYHD
responds; if no response, WHOI-l initiates a reconnect

51 min 28 s and 21 min 28 s after each hour: GAYHD samples remote station
voltage indicator and begins sampling 2048 data points at 0.5 s interval
(takes 17 min 04 s to complete)

08 min 32 s and 38 min 32 s after each hour: GAYHD begins transmision
sequence to WHOI-I; data are sent in 128 byte packets (1 to 3 at a time) and
each packet or group of packets is acknowledged by WHOI-I as having been
received correctly: total transmision time is about 3 minutes

All starting times are plus/minus one minute.

Figure 3: Data Format for VHF Packet Link

%

12

Each packet has a cyclic redundancy check appended, which is recalculated at the
base station to see if the packet came through error-free. If so, the base station
sends an acknowledgement (ACK) to the relay station and the next packet is sent.
If the ACK is not received, the packet is resent until it is received correctly. The
TNC in the relay station is set to retry 15 times (RETRY 15) if necessary. The
relay station nibbles its way through the data in its buffer until all the data have
been sent, which takes about 3 1/2 minutes, waits for the next half-hour's data and
starts the cycle again.

Link Failures

It is possible that a power outage or some other problem might interrupt the commu-
nications between the relay station and the base station. To test for this condition,
the base station sends a check packet once each minute; if the relay station hears
the check packet, it sends an ACK. If no ACK is heard, the base will send the
check packet up to 15 times, each time waiting for an ACK. Finally, the base will
disconnect since it assumes there is no relay station there. However, the base is
also set up to attempt to stay permanently connected (CONPERM ON), so it will
call GAYHD again and try and establish a connected status. If the link is really
down, then WHOI-1 may try forever to contact GAYHD; under the protocol for
CONPERM, there is no limit to the number of tries.

A more common error condition is that the base station is not functioning due
to (for example) a temporary shutdown for maintainance. If this condition persists
long enough, the data transmission from GAYHD will not be ACKed by WHOI-1,
and GAYHD will retry out (i.e., it will disconnect) after 15 tries to send a packet. If
WHOI-1 comes back on the air before the next half-hour data cycle has sent more
data to the relay station's TNC, WHOI-1 will connect again with GAYHD and the
data transmission will begin again, possibly without loss of data but more likely
with a loss of all the data that had been sent subsequent to the link shutdown.
However, if WHOI-1 is off the air for a long time, the PL1000 at the relay station
tries to send more data to the TNC, and finally the TNC buffer becomes full and
the PL1000 and the TNC become locked up.

System Reset

There are two ways to recover from the lockup described above: (1) simply restarting
the base controller program (described in detail in section 5-1 and Appendix B), or
(2) doing a remote reset. The resetting of the Base TNC, which occurs at program
start-up, will cause the TNC buffer to be emptied and program execution resumed. %
The data in the buffer will be lost but the following transmission will be received %
correctly. Alternately, the remote reset is performed by sending standard touch %
tones from the base to the relay station. The touchtone pair #2, if sent within one
second, will cause the relay station's TNC and the PL1000 to undergo a soft reset.
That is, both will be reset to their turn-on condition, except for the emptying of

I

1 vy %~~~*%* .P.p N

13

the hardware I/0 buffer in the PL1000. The next time the PL1000 clock starts
a sampling sequence (at 8 minutes 32 seconds before the next hour or half-hour,
whichever comes first) it will fill its software buffer correctly, but the data sent to
the TNC will be preceded by the left-over characters in the I/O line, which will
be processed as errors by the base station. The next sampling sequence will be
handled correctly. Therefore, if the link should be shut down at the base station
end, the consequence is a loss of all wave data from the moment of shutdown until
the system is reset, including the first record following reset.

Clock Reset

Another system problem, described in more detail in section 4.3 and appendix A.4,
occurs when the real-time clock in the PL1000 differs more than one minute from
the clock in the base station computer. Neither clock is very good (they both drift
1-2 seconds per day), but at least the base station computer clock can be reset
when desired. When the time word in the incoming data stream is detected by
the base computer to be more than 1 minute different from the clock in the base
computer, a clock reset sequence is sent to the PL1000. In effect, this lets the base
computer talk directly to the PL1000 as if the two were hardwired together and the
base computer were just a simple terminal. The two radios and TNCs between the
base computer and the PL1000 act as a wireless modem pair, and except for the
link delays one can talk directly to the PL1000 and even change its internal BASIC
program that determines the formatting of the data stream, for example.

Base Station Data Checking

The data stream arriving at the base computer is checked to see if the first few lines
(see Figure 3) have the correct format. If not, the entire incoming file is rejected.
It is this step that causes the first file following a #2 system reset to be rejected,
because the characters left in the PL1000 I/O buffer are not expected by the base
computer; this could be programmed around but has been only an annoyance, not
a problem.

The base computer determines that the end of file has occured when the charac-
ters NNNN are received; 2048 data words are also counted as an additional check.
If there were out-of-range values, they are discarded and new values inserted by
linear interpolation. This step, which is very important in all our data processing
systems based on tape-cassette recording, has not been used so far on even one
data point of the approximately 10 million data points so far received. Evidently,
the error-detection and send-ACK handshaking protocol of packet radio has done
exactly what it is supposed to do.

14

Data Processing

Section 5.1 describes the data processing. Briefly, power spectra are calculated from
the 2048 data points and the spectral coefficients are stored to disk on the VAX
that is being used as a file server. Simple moments of the spectrum (e.g., the square
root of the area under the spectrum is the root-mean-squared wave displacement,
and 4 times this number is defined as the significant wave height) are calculated
and stored as well. Although not part of the original project, the 2048 raw data
points are sent to another VAX file for the use of Dr. Hans Graber in the Ocean
Engineering Department. All communication with the VAX is over a broadband
Ethernet line using TCP/IP protocols.

Data Dissemination

Details of the data dissemination scheme used are given in section 5.4. As this
was one of the main reasons for this project, considerable effort and priority was
given to the planning and implementation of this aspect. Our motivation was the
perception that too often the dissemination of telemetered data is not given enough
emphasis. In this project, we wished to make the data available through means that
were expandable and automated, and which could be used to disseminate data over
large distances without special efforts. We chose to use (1) the Ethernet network
installed at the Institution, with TCP/IP networking protocols, and (2) data files
accessible over dial-up modems. In principle, anyone anywhere could have access to
our telemetered data using either the high data-rate networking access or the low
data-rate but very simple dial-up access.

2.4 Data Example

During the first six months of operation, the VHF packet system has provided
several useful datasets, archived both on the VAX and on floppy disks. There are
a number of possible ways to treat the available data, one of which is shown in
Figure 3. The plot in Figure 4 shows significant wave height and wave period for
the 17th and 18th of December over time. We could have as easily shown simple
wave amplitude over time, or the mean and variance of the wave data by week,
month and season.

15

VHF Telemetered Data
Waverider Buoy

Signifigant Wave Height (in) Wave Period(s

44

165 17 175 18 18.5 19

December

--- Wave Height -~Mean Wave Period

Figure 4: Timeseries of significant waveheight data.

16

3 Waverider Buoy and Mooring

The Waverider buoy is designed to measure wave height as a function of time in
the open ocean, away from structures and other fixed references. It measures wave
height by measuring the vertical acceleration of a surface-following buoy using a
gravity stabilized accelerometer that is sensitive to accelerations in the 0.035 to 0.65
Hz band. To minimize the effects of horizontal accelerations and buoy pitch and roll
on the measurements, the accelerometer is suspended in an oil-filled chamber that
is gimballed and damped in such a way as to keep the accelerometer within a few
degrees of the vertical and the sensitivity to horizontal accelerations below about
3% (Datawell, 1978). The accelerometer and associated electronics are housed in
a 70 cm sphere that floats on and closely follows the surface of the ocean (see
Figure 5). To determine wave height from the measured acceleration record, the
signal is doubly-integrated to produce the instantaneous water level relative to some
mean value. The continuous water-level fluctuations are then converted into a radio
signal which is transmitted continuously to the shore-based receiving station at Gay
Head on Martha's Vineyard. The Waverider buoy at the Buoy Farm operates on
a frequency of 27.595 MHz with a nominal power output of 80 mW. The carrier is
amplitude-modulated with a nominally 258 Hz tone; the tone is varied 1.86 Hz per
meter of vertical buoy displacement. Accuracy of the wave height measurement is
a function of frequency where waves in the important 5-15 second period range are
measured within ± 3% according to the manufacturer's specification.

The standard Waverider buoy has been modified for work at the Buoy Farm by
the addition of an ARGOS transmitter, power supply and antenna. The transmitter
and battery were mounted inside the instrument well (Figure 6) with a watertight
feedthrough used to connect the transmitter to the externally mounted antenna.
Transmitter, battery and antenna added about 20 pounds to the Waverider's weight.
The purpose of these modifications was to provide a means of monitoring buoy
location so that it would be possible to recover the buoy in case it broke free of
its mooring. Information concerning Waverider battery voltage and transmitter
battery voltage is also being telemetered via the ARGOS system. The mooring
design used for the Waverider buoy at the Buoy Farm location is shown in Figure
7. It is designed to allow proper operation of the buoy in currents up to 2 knots
and at the same time ensure that the mooring line does not reach the surface under
slack water conditions so that it will not get snagged by passing vessels. The small
floats attached to the polypropylene line are used to keep the line off the bottom
and thereby avoid chafe. A unique feature of most Waverider moorings is the use
of a rubber cord beneath the buoy. This very stretchable element (it will stretch S
to five or six times its original length before it parts) is strong and impervious to
seawater, but provides a very soft connection to the lower mooring. This eliminates
sharp tugs on the buoy as it follows the wave surface, even when it is stretched out
by a strong surface current which would contaminate the acceleration measurement
by the introduction of high frequency motions. This type of mooring has been used
successfully with Waverider buoys in many environments all over the world. 6

, , , ,p,

177

Antenna

Instrument well containing: Flashing light

accellerometer, circuitry Access bulkhead

and batteries

Buoy guard bumper

Tether attachment point

Figure 5: Waverider buoy cut-away [from Datawell brochure].

18

Figue 6 Moifie Waerier uoy howng he RGOStrasmiter

19

27 mHz Antenna 4AGS nena

70 cm Waverider Buoy ARGO Anen

St. Steel Chain

(3) 8 1b. '
Net Floats

Rubber Cord (15 m)

3/4" Plaited Poly 5/8" Hardware

(44 m)

Waverider Mooring for
Buoy Farm Deployment

Winter 1987

1/2" Chain (1 m) Anchor (300 lb. wet w'eight)

42 m Depth

Figure 7: Waverider mooring schematic for Buoy Farm deployment.

" "" ." " "9" " 5
' %" '

,/%")* "o " ." ". ". . " .'. ". - -. " p " - "t • ' -,. ',, ",,j• ,. * . ",, . . o-. "

20

4 Relay Station

The relay station on Martha's Vineyard is an essential part of this project because
the low-power 27 MHz transmission from the Waverider buoy moored at the Buoy
Farm (Figure 1) is not strong enough to reach our laboratories more than 40 km
away. In fact, other signals (renegade Citizen's Band operators using high-power
equipment and operating on unauthorized frequencies as "HF-ers") illegally using
the same frequencies are able to interfere with the Waverider transmissions even
when the signal is as strong as it is at Gay Head.

This section describes the equipment at the Gay Head site on Martha's Vine-
yard, and reviews the various permissions we have obtained to work there. The
software used is described in appendix A.

4.1 Description of the Van and Equipment

The military-surplus van being used is a small enclosure originally designed as an
electrical shelter to be carried by 3/4 ton trucks; in military usage it might carry
portable telephone exchanges or power generators, for example. Entry is through
a full-height door at one end. The van is approximately 4 feet wide by 6 feet deep
by 5 feet high, is made of aluminum, has high mechanical strength and an ability
to withstand exposure to high winds and a salt air environment. The van has skids
and lifting pads, which makes it adaptable to oceanographic work ashore or on a
ship. Figure 8 shows the van in its installed location near the lighthouse at Gay
Head. interior. The van contains the following equipment:

1. Waverider receiver, manufactured by N.B.A. Controls, Ltd., Model WCA-1.
It is battery powered, with l10VAC float charging of the battery.

2. A/D Converter and I/O Controller, manufactured by Elexor Associates, Model
PL1000. It is AC powered but switches to internal batteries if the AC line
fails.

3. Packet Radio Terminal Node Controller (TNC), manufactured by MFJ Enter-
prises, Model 1270. It requires 12VDC, which is supplied by the main battery
in the van if the 1l0VAC-12VDC supply (see item 4) should fail.

4. VHF Radio Transceiver (25 W), manufactured by ICOM, Model IC-28H. It
requires 12VDC, which is provided by a 110VAC-12VDC 10A power supply, ,
Stably Model 10-SR. If the AC line should fail, the main battery in the van
will power the transceiver.

N

21

Figure 8: Relay station van next to Gayhead lighthouse on Martha's Vineyard,

22

5. Tone sequence decoder and timer, WHOI designed and built, based on a Model
TSD decoder board from Engineering Consulting.

6. Gel Cell Standby Battery, from Globe, Model GC 12550.

7. Gel Cell Charger, from Globe, Model GRC 14060.

8. 6-Element VHF Yagi Antenna, manufactured by Cushcraft, Model Proline
PLC-1426.

9. Vertical Antenna for 27 MHz, Coaxial Half-Wave Type, unknown manufac-
turer and model.

Power

The primary power for the van is provided by the nearby lighthouse 220VAC supply
through Type UF cable, size 12-3. The line runs underground over the ten-foot
distance from the lighthouse to the van.

Within the van, a dual-circuit breaker panel provides 110VAC distribution by
means of wiremold strips. The 12 V gel cell (item 6 above) is a standby battery in
case the AC power should fail; the battery is kept charged by item 7 above, and will
supply the TNC (item 3) and the VHF transceiver (item 4) with power if necessary.
The Waverider receiver (item 1) and the PL1000 (item 2) have their own internal
batteries for standby use.

An inadvertent test of the standby power systems occured when an electrical
storm caused the breakers in the van to trip. Approximately 60 hours of backup
power is available for all parts of the system except the the Waverider receiver,
whose batteries fail after only 24 hours. Ground-fault interrupter breakers were in
use at the time; they have now been changed to standard breakers.

4.2 Site Considerations and Permissions

Martha's Vineyard has a considerable number of tourists on it each summer, most
of whom visit the southwest corner of the island, which is the part closest to the
Waverider site at the Buoy Farm. We felt that an unattended relay station on V

that part of the island would have even more problems than do our moorings in
accessible areas. Conveniently, however, the Coast Guard maintains a lighthouse at
Gay Head, so we approached Coast Guard Group Woods Hole to seek permission to
operate there. The area of Gay Head was nearly ideal for our purposes because of
its height about 45 m above sea level, and because it is nearly line-of-sight from the
roof of the Institution's Clark Laboratory in Woods Hole, where our base station
was to be located. In addition to height, the location next to the lighthouse had the
potential of providing an AC power line to keep our electronics powered. Although

23

this was not essential - we could have provided other power sources - it kept the
cost and complexity down, and greatly increased the reliability of the relay station.

A written request was sent to the Coast Guard (19 December 1986) asking
for permission to install the relay station at the Gay Head site. This was followed
by a meeting with Group Woods Hole at which the Coast Guard explained to us
that the lighthouse property and the responsibility of maintaining the grounds had
been contracted over to a local environmental group, the Vineyard Environmental
Research Institute, who would be contacted by the Coast Guard on our behalf. We /
received permission from the Coast Guard on April 15, 1988 and installed the van
at the Gay Head lighthouse on April 22, 1987. A Coast Guard Chief helped with
the installation, especially with the provision of the AC power line from inside the
lighthouse.

Our original permission was for a 6-month deployment of the van at the Gay
Head location; this duration was thought to be long enough for us to work out
the technical details of the project and to gain the desired experience with the data
dissemination. Indeed, that this report can be written is evidence that the technical
side of the project has been largely successful within our 6 months anticipated
project length. Also, we did not wish to unduly stress the Waverider mooring in
winter storms, or to gamble with losing the buoy.

However, we have received several requests to maintain the project through
the winter storms season. The researchers concerned with effects of waves on the
erosion of shorelines point out that our data set so far is unique, but not yet very
useful. The major damage to shorelines like that of Martha's Vineyard occurs
during winter storms, especially in February, and these researchers have specifically
asked if we can maintain the Waverider buoy at the Buoy Farm and the relay station
at Gay Head for the winter season. Subject to equipment needs and an extension
of our permission to have the van at Gay Head, we will try to accomodate these
requests for additional environmental information on the wave climate off Martha's
Vineyard. It costs little to keep the project running, so the public funds being spent
on the project will be more effectively applied if it remains in place through the
winter. ,

4.3 Installation and Checkout

The van was installed at the site by using a 3/4 ton pickup with a hydraulic tail
gate; the van was simply lowered to the ground and slid off into position. Because
of the potential for high winds at the site, the van was spiked to the ground using
four-foot lengths of one-inch black iron pipe that had a flange at the top. The pipe
was passed through the bottom tie-down rings of the van.

The two antennas were mounted using commercial television "Y" wall brackets
backed up with 1/4 inch aluminum plates on the inside of the van. The 6-element •
VHF yagi was pointed at the Clark Laboratory using a compass bearing. J.

0F

24

Mr. T. Simonds, a resident of Martha's Vineyard and an experienced technician
on digital and radio-frequency equipment, has acted as our volunteer, remote aide
for the few events where an on-site inspection was needed. In fact, the equipment
has been remarkably trouble-free; the only major event (described in section 3.1)
was a power outage at the van caused by the tripping of a ground-fault interrupter
circuit breaker (now replaced by a non-GFI breaker).

6.

25

5 Base Station

The base station for the VHF Packet Telemetry system is located in the Clark build-
ing at the Woods Hole Oceanographic Institution Quisset Campus. This building
is tall and located on a hill so provides a good site for radio communication.

This section describes the equipment at the base, and some of operations de-
tails. The software controlling operations at the Base is described in appendix
B.

5.1 Laboratory Equipment

The base station for the data telemetered from Gay Head is located in Clark 308.
The antenna, a 6 element VHF Yagi identical to that on the relay station is mounted
on the top of the east end of the roof of the Clark building. From there the antenna
has an almost perfect line-of-sight path to Gay Head. The coax cable (Belden 9251
RG-8U) is run down the east stairwell to the third floor, where it is run in the celing
to room 308.

The system components located in Clark 308 are the following:

1. VHF radio Transceiver - ICOM model IC-28 H

2. Packet radio terminal node controller - MFJ Enterprises Inc. model MFJ 1270

3. Regulated power supply - Stablyx model 10-SR

4. Tone pad and switch for WHOI designed tone sequence decoder

5. Zenith P.C. with two disc drives - model Z-148-2

6. Uninteruptable power supply - Topaz Powermaster model 84462

7. Epson dot matrix printer - model MX-80

8. Ethernet board and controller software - 3COM model 3C501

9. FTP (File Transfer Protocol) software - PC/TCP
I

10. WRPROC (data acquisition, analysis, and storage) software - WHOI designed
and implemented

Items 9, 10 will be discussed in section 6.
I

26

Primary Power

The base station is run on standard llOVAC available in Clark. All the elements of
the receiving system are plugged into the uninterruptable power supply, which can
provide approximately 20 hours of backup power, in case of an outage in Clark.

5.2 Installation and Checkout

The components are installed as shown in Figure 2. At power up, the TNC board
will have the right-most LED illuminated, the transceiver should be on low power
on 148.50 MHz, simplex, the volume control dial should be at 9:00 o'clock, and the
computer should have completed its start-up checks, and booted successfully. The
CONPERM option in the TNC is set to ON, so the packet boards automatically try
to connect whenever they are disconnected. When the two stations are successfully
connected, the two right-most LEDS on the TNC will be illuminated. The data
acquisition program is started by placing the program disk in drive A; and the
formatted storage disk in drive B:; typing WRPROC [CR] and entering [CR] again
when prompted to do so. The only maintenance needed is changing the floppy in
drive B: weekly, and keeping paper in the printer.

5.3 Troubleshooting Link Problems

There are two major kinds of problems that are likely to occur: (1) the Waverider
signal is bad, or (2) there is a timing problem between the PL1000 at Gay Head
and the Zenith at the receiving station. There are different diagnostic procedures,
and different "fixes" for each kind of problem, so they will be discussed separately.

Questionable Waverider signals are usually indicated by the mean waveheight;
the normal mean value output shown on the printer is usually about 0.4 . A very
low mean indicates that the phase-lock loop was "unlocked", and thus data values
of 0009 (9mV) replace real data values in the data stream. If the Waverider signal
is suspect, it is checked with the tone pad. The Waverider receiver at Gay Head
is accessed and connected to the 148 MHz link by entering the numbers 0751 in
less than 4 seconds. Using 0751 on the tone pad, allows one to listen to the audio
signal that comes across the link; this is actually a retransmission on the VHF link
of the 27 MHz signal received at the relay station. If there is an unusual amount
of static or other noise, there may be a problem with the Waverider itself, or it
may simply be that there are other signals overwhelming the Waverider signal,
for example interference from illegal users of that frequency. The voltage of the
Waverider battery is available in the ARGOS output, and should be checked. An
abnormal battery voltage could be the source of signal irregularities.

The WRPROC program (see Appendix B-i) starts waiting for telemetered data
at 05 and 35 minutes after each hour. If the Zenith clock gets more than about

' ~ S''XA'vY~- - wGN

27

4 minutes behind the PL1000 clock, than WRPROC starts listening for data after 6
it has started to be transmitted, so the first characters coming in are wrong, and
the data set is discarded. Conversely, if the Zenith gets more than about 5 minutes
behind the PL1000, then the Zenith sto s waiting before the data are transmitted
Consequently, it is dangerous to reset the Zenith clock (using the MS-DOS TIME
command) without also resetting the PL1000 clock; Appendix A.4 gives the PL1000
remote clock-reset instructions.

*1

',

28

6 Data

This section covers the system modules that acquire the data, process it, store
it, and make it available to the user community. The data system was set up as
a prototype for future operations. The modularity of the design is apparent in
Figure 9, a block diagram of the data handling system. Incoming data rates for the
Waverider data and other data sets we anticipate in the near future are, for the most
part, fairly low because of the limitations of the transmission media. Acquisition
and processing can be accomplished readily with inexpensive microcomputers such
as the PC clone we are using to acquire and process the Waverider data. File
serving, on the other hand, requires a multitasking machine. It should be capable
of handling several channels of processed data and communications from several
users simultaneously. At present, it is most economical to do this with a general-
use time sharing Digital Equipment Corporation VAX computer at WHO. Data
archiving is convenient on the VAX with 9 track tapes and it has connections to a
wide variety of communications modes. If our usage should increase in the future to
where it was uneconomical to use the VAX, we could substitue a DEC MicroVAX
with no change in software or a UNIX machine with some program development.

6.1 Data Acquistion and Processing

Data acquisition and processing axe accomplished on a PC clone by the program
WRPROC, written in the C language, and a set of subroutines written in C and
assembly language. A program report, describing the program in detail with list-
ings of the program and subroutines and examples of output data are included in
Appendix B. A general description follows here.

At half hour intervals, a set of 2048 values of the Waverider output digitized at
half second intervals is receivcd and passed to the microcomputer. The 17 minute
4 second acquisition period is centered on the hour and half hour. Data communi-
cation starts at about 81 minutes after the hour and half hour. Processing and file
transfer is complete by 15 minutes after the hour and half hour.

A power spectrum is computed with a fast Fourier transform (FFT) subroutine.
The following parameters are computed from the data and spectral coefficients:

1. Waverider bias - mean of all values

2. Maximum crest = maximum wave height

3. Minimum trough = minimum wave height

4. Mean wave period (normalized first-moment of the spectrum)

5. Zero-upcrossing wave period (normalized second-moment of the spectrum)

29

Simplified Diagram of the Data Processing System

Gay Head Clark 306

Waverider Buoy

I n PC Clone
B~rd BayRunning

Timr AWat IforDaa UpsWRPROC

I
J

Processng & Computat!ion

Spectal COK. IDOS Error
Fie nWrite Files to Floppy _ if can't write

Floppy Jto floppy

Potential- EhreSedFlstVA
Data Source

Potential
Data Source

VAX 8800 4
r------------------------with account for data

Telemetered archival & remote access.

A TELCHUZDial-Up Access
Datb fljginatin for Remote Users

Figure 9: Diagram of the modular data handling system.

-..

30

6. Total variance of the spectrum (area under the spectrum)

7. Significant wave height (four times the square-root of the variance)

8. Frequency of the iargest spectral peak.

The Waverider bias is subtracted from the individual data values before any of the
other computations are made. Details of the analysis can be found in the WRPROC
program report (Appendix B1).

Date, time, significant wave height, some operational parameters, and a plot
of the spectrum are sent to the printer. See Appendix B.3 for an example. Three
files are sent to the VAX via an Ethernet link using FTP TCP/IP software:

1. Raw data file. The 2048 wave sea height values.

2. Spectral coefficient file. Contains the time, the spectral coefficients, and the
moments computed from them.

3. Computed product file. Contains date, time, total variance of the spectrum,
significant wave height, mean wave period, upcrossing wave period, Waverider
bias, maximum crest, minimum trough, and frequency of the spectral peak,
at one record per half hour interval.

Examples of the spectral coefficient and computed product files will in Appendix
B.2.

6.2 Error and Malfunction Handling

We have designed the system to run unattended and to recover from errors and
malfunctions whenever possible. The microcomputer and printer are run from an
uninterruptible power supply. There are several error conditions and malfunctions
that are addressed by WRPROC:

1. Printer:
(a) If the printer is not ready when the program is started, an alarm sounds

and an error message appears on the screen.

(b) If the printer paper runs out, an alarm is sounded and the printer output
is redirected to the monitor.

2. Garbled incoming data: WRPROC checks the first few records, which do not
contain Waverider data, to be sure they have the expected format. If they
do not, the whole file is rejected. It is also rejected if an incorrect number
of data samples are received. Out-of-range values are replaced with linearly

31

interpolated values. If the Waverider bias is not within prescribed limits the
whole file is rejected. Through the 6 months of operation so far there have
been no transmission errors in the data, Although radio frequency interference
at the Base can cause the data to become garbled after receipt.

3. If the file server (VAX) is down and cannot accept the data files, WRPROC
stores them on its own disk for manual transmission at a later time.

4. If the VHF link transmission time (in the first group of characters sent) differs
by more than one minute from the expected transmission time, WRPROC
returns a message to the PL1000 causing it to update its internal clock. This
keeps the PL1000 and the microcomputer synchronized.

6.3 File Storage and Handling

Some file manipulation is carried out on the ifie server to make data dissemination
and archiving more convenient. A listing and description of the program FIL-
MAN.COM, written in VAX VMS DCL, which carries out the manipulations is
presented in Appendix C. We will describe the file management functions for each
of the three types of files received by the file server. Each day begins with the 0000
UTC data file. Each week begins at 0000 UTC on Saturday.

1. Spectral coefficient file,: WRPROC appends the spectral coefficents from the
current half hour to the data already accumulated that day and sends the
whole updated file each half hour. Thus, by 2350 UTC that day, 48 files exist,
only the last one containing all the data from that day. All the files but the
last one are deleted (purged). This complete raw data file is kept for another
24 hours to allow any one who wants the data to acquire them. At 2350 UTC
the following day, the file is deleted. To make this clearer, at 2350 UTC on
May 14 the files from May 14 are purged, leaving one May 14 file, and the file
from May 13 is deleted. We do not archive the raw data.

2. Computed product files: This is the primary data dissemination ifie. These
fies accumulate half hourly in the same manner as the raw data files and
are purged at 2350 UTC each day. In addition, weekly files consisting of the
concatenation of daily files are generated and archived. At 2350 UTC each
day, that day's file, after purging, is appended to the file WRTHSWK.DAT,
containing all the data from the current week. At 2350 UTC on Friday sev-
eral changes are made in file names. The file WRLSTWK.DAT, containing
the data from two weeks previous, is renamed WRYRMODA.DAT where YR-
MODA is the date of the first day of that week. For example, on 29 May the file
containing the data from the week beginning 16 May 1987 would be renamed
WR870516.DAT. The file WRTHSWK.DAT is renamed WRLSTWK.DAT,
and a new file WRTHSWK.DAT is opened for the data from 0000 UTC, 30
May. We begin the week on Saturday so that on Monday morning we can

32

look at the file WRTHSWK.DAT and see what has happened since we last
looked on Friday afternoon.

3. Raw data file: These are sent each half hour to an account on the VAX of an
investigator who wants the data. We do not archive the original data.

Once a month the daily spectral coefficient files and weekly computed product files
are copied to a 9 track tape for archiving. After one month the computed product
and spectral coefficient files are backed-up then deleted from the disk.

6.4 Data Dissemination

In order to experiment with making the data easily available through a variety of
communications channels, we store it on a disk connected to a VAX. This computer
is connected by DECNET to a number of other WHOI computers, to a PACX
system which allows other connections; to a high speed cable (WHOI network)
which is routed to all the WHOI buildings, and to the telephone system through a
multiport modem. The WHOI computer network is connected to an international
network system on which most of the major oceanographic institutions also appear
as nodes.

The naming of the data fies has already been described. Knowing the disk
drive and account name PODA:[I33.TELE] one can straightforwardly copy any of
the files to another account on any of the WHOI DECNET computers or to any
of the computers in the international network. Anyone can call in through the
telephone system or the WHOI PACX system and access the data through the
program TELECHUZ, described in Appendix D. To connect to this program call
617-540-6000, for 300/1200, baud modems. To the prompts given in lower case
letters, respond with the upper case characters: (<CR> means carriage return)

<CR>
enter class: RED <CR>
class red start

Username: 133 TELE <CR>
Password: (can be obtained from the authors)

The user will be guided by a set of menus and prompts. Appendix D.2 contains
a sample session, showing the menus and options.

TELECHUZ allows the user to access the Waverider data and other data which
become available in the future through a series of menus. At present these menus
offer the three data files described above and a choice of getting the data one screen
at a time or a whole file at once. A flow diagram of the program and a listing of
the program and its subroutines appears in Appendix D. For security purposes the

lo VI

33 tl'

program and the account are set up so that, upon acceptance by the VAX of the
username and password, the user is captive in TELECHUZ. He can move between
any of the menu screens within the program but, beyond that, can only log off.
The complete file descriptor for each file accessed is given for copying to another
account.

6.5 Routine monitoring

Although the data system has been designed to run virtually by itself, there are a
few tasks which require human intervention:

1. Daily - Look at the printer output from several half hour intervals to be sure
everything in the system is working and sensible data is being processed. Add
printer paper when required.

2. Weekly - Check files on VAX disk to be sure all data is getting to the VAX
and that the FILMAN.COM program continues to resubmit itself. Insert a
new floppy disk in the PC. Check the PC clock time.

3. Monthly - Archive spectral coefficient files on nine track tape. Delete com-
puted product and spectral coefficient files from the disk.

6.6 Lessons

Probably the weakest links thus far have been the analog transmission between
the buoy and Gay Head, and the link to the Institution's Digital VAX computers.
Our account is on the Red VAX, the Institution's general time sharing computer.
The disk drives, however, are connected to the Blue VAX, which is connected to
the Red by DECNET. A failure in either the Red or Blue VAX or the disk drive
will prevent the PC from getting data to the disk drive. Because the whole day's
accumulated Fourier coefficient and computed product file is sent each half hour,
it is only the last file of the day which is crucial, but downtime in one or another
VAX has required that we move some data from the PC to the VAX manually. The
Red VAX was upgraded from an 11/780 to an 8800 during May 1987 and numerous
other changes were made in hardware configurations. Downtime connected directly
with the swap was small but problems resulting from it have caused considerable
downtime. The result is that we cannot rely on the VAX for data archiving but
must archive locally at the PC until we are sure the data is on the VAX disk drive.

To keep the program as simple as possible we began with the assumption that
the data reaching the PC would be error free. The digital transmission link from
Gay Head to the Clark building seems to be completely reliable but the analog data
tranmitted from the buoy to Gay Head has suffered from interference. The result
in the data has been groups of 8 or more consecutive identical values near zero.

- . -N'C.{

34

There are two alternatives for responsible data processing in a situation like
this:

1. Program around known data problems to recover as much data as possible.

2. Provide a diagnostic parameter which gives a good indication of the data
quality.

Since we are recording data much more frequently than is required by the data
users, we can afford to lose some data and therefore chose option 2. The diagnostic
parameter is the mean value over all 2048 sea height values per half hour observation
period. This drifts slowly but stayed generally within the limits of 0.32 to 0.41
during the first six months of operation. Values outside this range were a reliable
indication that bad data had been received.

~1,

.~~ ~ ~ ~ ~ . . -----

35

7 Summary

7.1 Unanticipated Problems

As in any developmental technical project, there have been numerous small prob-
lems, most of which happened only once or twice until we were able to implement
a fix. An example is the previously mentioned power outage at the relay station
caused by an electrical storm and a sensitive GFI circuit breaker; this was fixed by
replacing the GFI with a standard circuit breaker.

More serious are a set of recurrent problems that we have not been able to S
eliminate. The most devastating system failure occurs when the Zenith computer
at the base station has an error in trying to read one of its floppy disc drives. The
base station halts until someone manually resets the Zenith; no data are passed
over the link until this is done. We are sure this error is correctable; we have not
yet been able to do it. Equally frustrating is a paper jam in the printer logging the
wave spectra; the printer will work for days, even weeks, then jam.

A more insideous data loss .occurs when there is interference on the 27 MHz link
from the Waverider buoy to the relay station at Gay Head. The editing algorithms
in the base station data processing package are only able to discard any data that
show this interference: the symptom is an unlocked phase-lock loop in the Waverider
receiver in the relay station, which yields nominally zero voltage to the PL1000,
which comes through the system as a series of approximately four seconds or longer
of zero waveheight. When the base station sees this symptom, it flags and discards
that data segment. If the fault occurs several times in a 1024-second wave record,
the entire record is discarded. This is an especially frustrating problem because
it is caused solely by illegal operation on the frequency we are using; much of the
operation seems centered in the midwestern part of the country, but this may simply
be an accident of the 27 MHz propagation paths to our site.

A final problem, caused by hardware but not yet solved, is the drift of the
real-time clock in the Zenith computer. The clock drift in the PL1000 in the relay
station would be no problem if the Zenith were correct, because the PL1000 clock 5
is reset from the Zenith's clock. Sections 1.3 and 4.3 describe this problem in
more detail. Here we mention only the surprising fact that it seems very difficult
to get an accurate time signal easily. The cost of getting a high-quality good
time mark (within 1 ms, say) is high. We initially thought we could acquire the
system time from our Institution VAX, but it turns out that this is set arbitrarily S
from a computer operator's personal wristwatch whenever it is needed, with no
controls on its accuracy. Digital time marks are available over the radio, but the
interfacing equipment is typically costly (several thousand dollars) except for a 10
ms unit from Heathkit; a time mark is also available to 50 ms with a telephone
call via a dial-up modem at the Naval Observatory, but this is a toll call and
requires the communications packages and equipment. Finally "internet" time is

36

supposed available over the computer networks that WHOI is part of; we have not
yet implemented this possibility.

A different kind of unanticipated problem is scientific interest shown in the
data being obtained; we had not prepared for the possibility of maintaining the
data link, perhaps indefinitely. Also, there is pressure to extend the wave measuring
network to other locations and to add wind measurements at appropriate sites. Our
intention is to respond to these pressures by suggesting cooperation and by offering
technological knowledge.

Finally, as we consider becoming "operational," we see as a continuing problem
the decision to make the relay station active and the base station passive. That is,
we have put the control of the link at the relay station: it looks at its own clock and
decides when to start sending some data. This was a learning experience, as we had
intended, but it is not the best way to be operational. If the control were firmly
at the base station, including the command to start sampling and the command
to start sending data, then the base could request the next data set whenever it
wanted it, and could also get it more or less often if it prefered. This would allow
the base to be s;hut down for maintainance, for example, without causing any lockup
of the relay station's TNC-PL1000 combination. More importantly, the base could
then be used for several tasks, or to obtain the data from several remote stations,
without Jepardizing its being available at just that moment that the relay station
decides to start sending data.

7.2 Scientific and Technical Extensions

Several useful extensions are alluded to in the section above:

Science Extensions

1. Maintain the wave data acquisition throughout the winter season, to give
needed environmental information on the wave climate of Martha's Vineyard.

2. Add a telemetering wind sensor to the Buoy Farm mooring suite.

Technical Extensions: Making the Present System Work Better

3. Provide an accurate time signal to the Zenith computer, by use of the Heathkit
"Most Accurate Clock" or by acquiring "internet time".

4. Fix or replace the Zenith computer to eliminate the floppy disc reading errors,
or trap the error so the system can be self-correcting.

5. Fix or replace the Epson printer so the paper does not jam.

w I

37

Technical Extensions:Making a Better System

6. Change the protocol to have the relay station be passive; that is, put the
control at the base station to trigger a sampling period by the PL1000, and
to request the transmission of the data set.

7. Replace the 27 MHz analog transmission from the Waverider with a VHF
packet radio transmission. This would require an A/D converter in the buoy,
a TNC, and a new radio (a transceiver instead of just a transmitter). The
relay station would become just a digital repeater station instead of a receiving
and computing station. The base station would trigger a transmission of a
data sequence of a specified length, for example 2048 points from half-second
sampling of the wave displacement.

7.3 Conclusions

The two main goals of this project have been achieved. We have been able to au-
tomate the acquisition, processing, and dissemination of some telemetered oceano-
graphic data, and we have gained some useful and informative experience with
packet radio for ocean data telemetry.

The difficulties in the project have been mainly associated with interference on
the 27 MHz analog transmissions from the Waverider buoy to the relay station on
Martha's Vineyard, and with various minor and potentially correctable equipment
problems.

The successes in the project have been in the ease of use of the packet radio and
in its remarkable ability to pass error-free data, and in the computer networking
to pass the processed data over Ethernet to a mainframe computer where the data
can be accessed over public dial-up telephone lines.

Continued use of the system would enhance the scientific value of the wave
data, since so far (April-September) the wave climate has been relatively benign.
Because winter storms, especially in February, are the main cause of coastal erosion
on Martha's Vineyard, we are considering leaving the system deployed through the
coming winter.

A major technical extension of th project would be to replace the 27 MHz
analog transmission in the Waverider buoy with a VHF packet radio transmission.
This would eliminate data errors caused by interference. It could also increase the
range of the transmissions because a gain antenna could be more easily used at both
ends of the path, and more power could be put into the transmissions since there
would be no need to transmit continuously.

• S

38

8 References

Datwell ibv, "Operation and service Manual for Waverider, Supplemented for 600-9
series" Datawell by, Laboratory for Instrumentation, Zomerluststraat 4, 2012
LM Haarlen, Netherlands.

Briscoe, M. G., "Status Report on Ocean Data Telemetry", Woods Hole Oceano-
graphic Institution Technical Report WHOI-86-17, Woods Hole, MA, May
1986.

Briscoe, M. G., and D. E. Frye, "Motivations and Methods for Ocean Data Teleme-
try", Marine Technology Society Journal, Vol. 21, No.2 pp 42-57.

Frye, D. E., "Data Telemetry, Assimilation and Ocean Modeling-Semi Annual
Report" Woods Hole Oceanographic Institution Technical Report WHOI 87-
21, Woods Hole, MA, June 1987.

39

A. Gay Head Relay Van

A.1 PL1000 Digitizer Program 4

10 RM Program to digitize 2048 smples at 500 ms rate; each half-hour
1 REM - M.Briscoe, 27 Apr 8712RM

19 RE flags for autostart;no echo;computer mode
20 SFL l,1:SFL 16,1:SFL 21,1
25 PRINT "'I PL1000 Runnirg'
29 N=2048
30 £UW N+1
32 REM
33 R check for start times at 51m28s or 21m28s past each hour
35 IF CLO(l)--51 THEN 37
36 IF CLO(1)=21 T H 37 ESE GUO35
37 IF CLO(2)=28 rM 40 ESE GOTO35
40 RfCIW(5) :S=c(O(4) :T-ID(O) :L=C(1) :VfCIO(3) :V=V-1980
45 RU'!
46 RE get analog data; read voltage check
50 ASAN 0,0,50 MS,N,B,0
51 ASCAN 1,1,1 MS,1,B,2048
52 REM
53 REM print headers,buffer,footers
54 D=MiO(5) :HZf.O0) :M=C1O(1)
56 PRDI:PRINT 'T=ZC "; W.
57 IF C100 THEN GOSUB 100
58 IF C(10 THE GOSUB 100:PRINr C:C-C+1
59 IF C<--999 TIEN GO63 ELSE C-O
63 PRINT '"NT ";'MVY ";
64 IF D(10 TEN G= 100:PRINT D;
65 IF H(10 THEN GOSUB 100:PRINT H;
66 IF o THEN PRNT "00"
67 IF M-0 TME GMO 69 '.4.

68 IF M<10 THE GOShB 100:PRINT M69 PRIT'2 "*"'
70 IF R(10 THE GOSUB 100:PRINT R; 99 REh special printing subroutines
71 IF S(10 TMD GOSUB 100:PRINT S;V;SPC(2); 100 PRINT "0";:RETURN
74 IF T(10 TEN GOSUB 100:PRINT T; 150 PRIfM "-";:rrR
75 IF U-0 TM PRINT "00/"; 160 PRINT SPC(1); :RETURN
76 IF U-0 M GMO 78 198 REK
77 IF U(10 TMN GOSUB 100:PRINT U;"/'; 199 REM subroutine to block the data
78 PRDIT " 74116 ";"07102" 200 Y-ABS(Z):IF Z>=0 THEN GOSUB 160. ESE GOSUB 150
79 PRFIT "999" 201 IF Y>=1000 rHU PEURN
83 RR J=O 70 N-7 STE 8 202 GOSUB 100:IF Y>=100 THM REORN
84 1% I=l TO 7:Z=BUF(J+I-1) 203 GOSUB 100:IF Y)=10 THN REIRN
85 PRDNT SPC(1);:GOSUB 200:PRIT Y; 204 GOSUB 100:RERN,
86 NEXT I
88 NEXT J
90 PRINT "333 ";"44185 61616 8";
91 L-ARS(BF(2048)):IF L(1000 THE GOSUB 100 SE GOTO 94
92 IF L<I00 TH GOSUB 100 ESE GOTO 94 p
93 IF LW10 T GOBZ 100 ESE GOO 94
94 PRINT L;" 69696=": PRINT '"lW':PRINT
97 GOTO35
98 REM

%%.

40

A.2 TNC Parameters (Relay and Base)
8BITCONV OFF
AX25L2V2 ON
AUTOLF ON
AWLEN 7
AXDELAY 0
AXHANG 0
BEACON EVERY 0
BKONDEL ON

BTEXT OFF
BUDLIST OFF
LINK STATE IS: CONNECTED TO WHOI-1

CHECK 0
CLKADJ 0
CMDTIME 1
CMSG ON
CPACTIME OFF
CR ON
CTEXT *** THIS IS THE REMOTE AT GAYHEAD
CANLINE $18
COMMAND $03
CALSET 157
CANPAC $19
CONOK ON PACTIME AFTER 10
CONMODE TRANS RETRY 15
CONSTAMP OFF REDISPLA $12
DAYTSA OFF RESPTIME 5
DELETE OFF SCREENLN 80
DWAIT 1 SENDPAC *OD
DIGIPEAT ON START $11
ECHO OFF STOP $13
ESCAPE OFF STREAMSW $7C
FLOW ON STREAMCA OFF
FRACK 4 STREAMCA OFF
FULLDUP OFF STREAMDB OFF
HEADERLN OFF TRFLOW OFFHID OFF TRIES 0
LCOK OFF TRACE OFFLFAD OFF TXDELAY 40LFADD ON TXFLOW ON •
LCSTREAM ON UNPROTO OFF

LCTRAMONUSERS 1MONITOR OFF USERS ON
MALL OFF XFLOW ON
MCON OFF XMITOK ON

MFILTER $13 XOFF $13

MRPT OFF XON $11
MSTAMP OFF
MYCALL GAYHD
MYALIAS
MAXFRAME 4
MCOM OFF
NEWMODE ON
NOMODE OFF
NUCR OFF
NULF OFF
NULLS 0
PACLEN 128
PARITY 3
PASS $16
PASSALL OFF.' , ~~p~~.j 4 ~ . . ~ ~ .v

41
4

8BITCONV OFF 0
AX25L2V2 ON
AUTOLF OFF
AWLEN 7
AXDELAY 0
AXHANG 0
BEACON EVERY 0
BKONDEL ON
BTEXT OFFQ
BUDLIST OFF
Link state is: CONNECTED to GAYHD P
CONPERM ON
CHECK 6
CLKADJ 0
CMDTIME 1
CMSG OFF
CPACTIME OFF
CR ON
CTEXT THIS IS THE WHOI VHF PACKET SYSTEM
CANLINE $18
COMMAND $03
CALSET 157
CANPAC $19
CONOK OFF
CONMODE CONVERSE PACTIME AFTER 10
CONSTAMP OFF RETRY 15
DAYUSA OFF REDISPLA $12
DELETE OFF RESPTIME 12 v
DWAIT 1 SCREENLN 80
DIGIPEAT OFF SENDPAC SOD
ECHO OFF START $11
ESCAPE OFF STOP $13
FLOW OFF STREAMSW $7C
FRACK 4 STREAMCA OFF
FULLDUP OFF STREAMDB OFF
HEADERLN OFF TRFLOW OFF
HID OFF TRIES 0
LCOK ON TRACE OFF
LFADD OFF TXDELAY 40
LCALLS TXFLOW OFF
LCSTREAM ON UNPROTO OFF
MONITOR ON USERS 1
MALL ON XFLOW OFF
MCON OFF XMITOK ON
MFILTER $13 XOFF $13 "
MRPT OFF XON $11
MSTAMP OFF
MYCALL WHOI-1
MYALIAS k
MAXFRAME 2
MCOM OFF
NEWMODE ON
NOMODE OFF
NUCR OFF
NULF OFF
NULLS 0
PACLEN 128
PARITY 3

PASS $16PASSALL OFF

42

A.3 PL1000 Clock Reset Instructions

There are times when the PL1000 clock and the computer clock have drifted sig-
nificantly from "real" time, and need to be corrected. Also, occasionally to recover
from a serious error, the PL1000 clock should be reset. The following describes the
command sequence used to reset the PL1000 clock. The ! symbol indicates the
beginning of a comment.

The PL1000 clock can be reset from the base using a terminal program to
allow communication. Communications parameters in the terminal program should
be set as follows: 1200 baud, 7 data bits, 1 stop bit, even parity. All communication
with the PL1000 MUST BE dune in capital letters, it does not recognize lower case
letters. To reset the clock, the following sequence should be sent:

C <CR> Repeat this sequence until the TNC "CMD": prompt
is returned to the screen

ECHO ON These packet commands allow easier viewing on the
AUTOLF ON monitor.

CONV sets to converse mode, from whence PL1000 is
contacted.

V ^ C <C> ! Sends C through the TNC at WHOI to the
Gayhd TNC andPL1000.

PRINT TIME ! If time is returned, you know you've got the
PL1000.

SCL 1,10 ! If time is wrong, the SCL (set clock) command is
used to reset hours (0), minutes (1), or
seconds (2). This example resets minutes to
10.

PRINT TIME ! Prints newly corrected time. If still incorrect,
use SCL to correct, otherwise, execute next command.

RUN ! Restarts the Packet Link Controller program, will
return * * * * * PL1000 Running * * ** on the monitor.

C <C> ! Returns to WHOI TNC in command mode. Returns CMD: prompt.
AUTOLF OFF ! Resets packet parameters to what they need to
ECHO OFF be for automatic logging.

Now exit the terminal program and restart WRPROC at base, and data aqui-
sition and logging will begin correctly.

43

B. Base Station

B.1 WRPROC Program Report

NAME: WRPROC
Copyright (C) 1987 by Woods Hole Oceanographic
Institution. All rights reserved.

TYPE: Main Program
PURPOSE: To acquire data from a Waverider buoy at specified intervals,

compute the power spectrum and some other statistics from the
data, and send the results to a file-server.

MACHINE: IBM PC or clone thereof
SOURCE LANGUAGE: Microsoft C and assembler

DESCRIPTION: This program spends most of the time watching the clock.
Every half hour (at about 8 minutes and 38 minutes past the hour), it receives
a set of data, consisting mainly of 2048 wave heights. The program does some
computations, outputs a summary to the printer, creates some files, sends copies of
files to the Red VAX, and then waits for the next set of data. Program operation
takes the following steps:

1. Do necessary initialization

2. Start loop, ended by user striking the F1 key

a. Get data

b. Check data, and convert to wave heights

c. Do computations

d. Create fies on PC

e. Send file to the VAX

f. Printer output

3. End loop

Details of each step follow.

The initialization section includes the following:

1. Check to see if the printer is on-line and ready. If not, rings the terminal bell
10 times, displays a message on the screen, and stops.

2. Sends one header line to the printer.

* ~ ~'

44

3. Opens COM1 port.

4. Sends commands to the PL1000 to turn echo off and enter conversation mode,
and then to start running.

5. Open a scratch file called TMPFIL.DAT.

The program then enters a dormant period. During this time, the program checks
to see if one of the function keys has been pressed by the user. The function keys
implemented in the current program version are:

F1 to stop program

F2 to save the raw data file on the Red VAX. The file name will be WRd-
dtttt.DAT, where dd is the day of the month, and tttt is the record time,
both in UTC.

F8 to display incoming data on the screen.

Except for F1, these options can be reversed by striking the corresponding function
key again. The dormant period ends at 5 minutes or 35 minutes past the hour. At
this time the program displays a suitable message on the screen, and enters a wait
period.

At the start of the wait period, the program initializes the input interrupt
routine, thus enabling input. It will wait up to 6 minutes for the first input record,
and up to one minute for subsequent records. If no carriage return (signifying end
of record) is received within these limits, the input is timed out, and the program
prints a message and returns to the dormant state. As each record is received, the
record is stored in the scratch file. When a record starting with 'NNNN' is received,
input has been completed, and the interrupt routine is terminated.

The program then rewinds the scratch file, and reads and decodes the records.
The format of the file is described in Figure 3. The items which are used (in
addition to the actual data) are sequence number, transmit time, latitude, longitude,
quadrant, buoyid, and voltage. If the transmit time is not the same as the time the
first record was received, the PL1000 clock is reset. If the voltage is less than 1000,
the terminal bell is rung 10 times, and a message is displayed on the screen.

The next step is to check the data for out-of-range values, and convert the input
to meters. Any out-of-range (>5000) points are replaced with linearly interpolated
values. However, it appears very unlikely that any such values will ever occur. The
other computations are:

1. Find, and remove, the mean of the entire series.

2. Find first differences of the series:

Ip

45

X(I) = X(I + 1) - X(1); X(N) - X(N - 1)

* Compute the power spectrum, using 8 pieces of 256 points each. The spectral
estimates are recolored by dividing each estimate by 4 sin (k/n) where k
is the estimate number. Actually, the first four, and the last 64 points of
the spectrum are not computed. This leaves 60 estimates, corresponding to
frequencies from 4/128 to 63/128, or wave period from 32s to 2s.

o Some statistics are computed from the remaining spectral estimates

a. mo = Ej= 4 E- where E, is the i'th spectral estimate.

b. ml Z=4 n En)/T where T is the time length of one piece
c.E: mn 2 En) ,/2

d. H8 = [4] (-; this is the significant wave height
e. T, = mo/mi; this is the mean wave period

f. T2 = Vm 0 /m 2 ; this is the zero-up-crossing wave
period

g. Tm = 1/fm, where fis the frequency of the
maximum spectral estimate. T, is called
the peak period.

This completes the computations

Two files are maintained on a floppy disk on a daily basis. The file names are created
from the date, and the files are opened in 'append' mode. This means that if the
file already exists, it will be added to, and if it does not exist, it will be created.
This technique results in a file for each day. One file contains only a summary
record for each data set. The other file, in addition to a summary, contains the
spectral estimates. The updated version of both the files is sent to the Red VAX, in
PODA:[I33.REP1]. Complete file descriptions are included under OUTPUT, below.

The printer output includes values of computed parameters, and a line printer
plot of the spectrum. A sample is included in Appendix B.3

INPUT:

The input from RS232 port 1 consists of 264 'records', each one terminated by a
<CR> and <LF>. The first and last few records contain no wave data, and are
ignored by the program. The <LF> characters are also ignored. A description of
the record contents can be found in Figure 3.

The port configuration is:

- - -- S U V P-, - S SS~i~ , P.

46

1200 baud, 7 data bits, 1 stop bit, even parity

The input is done by an interrupt routine. Because of the shortness of some of the
input records and the desire to display the input records, the processing cannot quite
keep up with the input. Fortunately, the input is not 'real time', but is buffered
on the other end. So, after each <CR>, the program sends an XOFF character, to
stop input until it is ready for the next record, when it sends on XON. This works
very well, with no appreciable slowing of the processing.

As the input records are read, they are stored in a scratch file. Then, when the
last record has been read, the scratch file is rewound, and the records are processed.
This file can then be transferred to the Red VAX for further processing if desired. I

OUTPUT:

A. Summary File I
A summary file is created on floppy disk for each day. The name of the file is created
from the year, month, and day of the month. For example, the file for May 27, 1987
would be S870527.DAr. The file is opened in 'append' mode, so a new file is created
for each day. One record is written to this file for each data set. The items in this
record are:

1. Year, month, and day

2. Time, 24-hour format, in UTC

3. Root mean square wave height

4. Significant wave height

5. Mean wave period

6. Zero-up-crossing wave period S
7. Average value for entire data set

8. Maximum value for data set, with mean removed

9. Minimum value for data set, with mean removed

10. Frequency of spectral peak

A sample of this file is included in Appendix B.2.

After computations for each half hour data set have been completed, this com-
plete file is copied, via Ethernet, to the Red VAX, PODA:[133.REP 1]. The file name
remains the same. If the PC has a hard disk, this file is also stored on that. If not,
it is stored on a floppy disk.

.

47

B. Spectrum file

The name of this file is created in the same way as the summary file, except the first
character is C (for coefficients) instead of S (for summary). The fie is created the
same way, giving one file per day. Also, the file is transferred to the same directory
on the Red VAX. The file is stored on hard disk or floppy in the PC exactly as is
for the summary file. The contents of the file are different. For each data set, there
will be 12 records, as follows:

Record 1:

1. Time of observation, 12-hour clock, in UTC •

2. Mean value of data set

Record 2:

1. Value of m0 , the zero'th moment

2. Value of ml , the first moment

3. Value of m2 , the second moment

4. Significant wave height

5. Mean wave period

6. Zero-up-crossing wave period

Records 3 - 12

Contain spectral estimates. The first one corresponds to ?'N

a frequency of 4/128, and the last one corresponds to

a frequency of 63/126.
A sample of this file is included in Appendix B.2.

C. Raw Data File

In addition to the two files of computed data, a file of the original 2048 values of
sea surface height can be transmitted to the VAX

D. Printer

Printed output contains values of computed parameters, and a printer plot of the
spectral estimates. A sample is included in Appendix B.3 At strategic times the
program checks the printer status. If at one of these times, the printer is not
available, the program displays a message on the screen, and sends all printer output
to the screen. This is done because otherwise the program would get hung up waiting

48

for the printer. If the printer is not available when the program is first started, the
terminal bell is sounded, a message is displayed, and the program stops. It is
possible to redirect the printer output, so the program can be run if no printer is
available. See USAGE, below.

USAGE:

These instructions apply to a IBM-PC clone with two 360k floppy disk drives One
disk must contain the following files: wrproc.exe, and ftp.exe (from FTP Software).

This is the program disk, and will also be used for the scratch file. The second
disk must be empty; this is the data disk.

After the system has been booted up, remove the DOS disk and put the pro-
gram disk in Drive A, and the data disk in Drive B.

Start the program with the command: wrproc

optionally followed by one command line argument, to redirect the printer output.

The argument, if present, must be the file or device name to which the printer output
is to be sent. For example, to send printer output to the screen enter wrproc CON.
To discard printer output, enter wrproc NUL. The program greets the user with
the message:

Program wrproc, waverider processing. Copyright (C) 1987 Woods Hole
Oceanographic Institution. All rights reserved.

Place an empty formatted disk in Drive B, and press <RETURN> to
continue:

Do as requested. The program should proceed with no more attention.

Although this program is intended to run unattended, the IBM PC and MS-
DOS were not really built for unattended operation. Things must be attended to
at least once a week, and preferably every day when possible. Items which need
attention are:

1. Printer

a. Check for paper jams

b. Be sure there is enough paper

2. Check for low voltage at the Gay Head site. If low, contact someone to fix
the problem.

49

3. Check for reasonable mean values. Should be between .32 and .4. If out of]
this range, look for other problems. Could be caused by a power outage at
Gay Head or by data transmission interference.

4. The clock on the PC has a tendency to drift. Once or twice a week it may
need setting.

5. Once a week replace the floppy disk in Drive B with a new formatted disk.
Copy the summary and spectrum files for the current day to the new disk.

IN0

0

50

SUBPROGRAMS USED:

The following table lists functions included in the program.

Name File Rturn Description

wrproc wrproc.c none Main program
chrdy timup.c status Checks if input record complete
comput comput.c none Finds spectral moments and other

parameters
convrt convrt.c no. interp. Converts to wave heights, replaces bad

values
datdec datdec.c no. points Decodes records
datget datget.c no. points Reads input and storec in scratch file
prnt doprnt.c none Prints computed parameters
dumpf dumpf.c none Dumps scratch file to printer
fdmean comput.c mean(real) Finds maximum, minimum, and mean
fndscl lpplot.c max. scale Determines scale for spectrum plot

* funcno funcno.asm func. no. Gets function key number
getset getset.c none Does program initialization
interp convrt.c no. interp. Interpolates one bad section
intrp convrt.c no. interp. Interpolates bad values in whole array

, intrw intrnu.asm none Input interrupt routine
Ipplot Ipplot.c none Spectrum plot on printer
ouprt ouprt.c none Writes string to port
powspec comput.c status Finds power spectrum

* prnrdy prtset.asm status Checks if printer ready

, prtset prtset.asm none Opens RS232 port
putsml putdat.c none Stores record in summary file
putspc putdat.c none Stores records in spectrum file

@ rfft05 rfft05.c none Does fift
rmean comput.c none Removes mean from one piece
settim settim.c none Sets time on PL1000
timup timup.c status Checks if time to start looking for

data
valert doprnt.c none Alerts for low voltage

* wprt prtset.asm none Writes one character to port.

* Written in assembly language
@ Acquired from Eddie Scheer

po

51

The program spawns commands to run the program FTP.EXE, used for file
transfer. This program is proprietary and cannot be copied to other computers. e

ERROR CONDITIONS:

The following error conditions are checked by the program, and the corresponding
action taken.

1. The mean of a data set is less than .3 or greater than .42. The program
outputs an appropriate message to the screen, and skips the offending data
set. No records are written to either the summary file or the spectrum file,
and the raw data file is not transferred.

2. The printer is off-line or out of paper. If this occurs at the start of a run,
the terminal bell is sounded ten times, a message is displayed on the screen,
and the program stops. Otherwise, a message is displayed on the screen,
and further printer output is redirected to the screen. The program must be
stopped and restarted to direct output back to the printer.

3. Low voltage at Gay Head is detected in the input data. The terminal bell is
sounded ten times, and a message is displayed on the screen. This situation
requires attention.

4. An input record is not received after a specified length of time. The program
outputs a message to the printer and the screen, and returns to the dormant
state.

5. One of the input records (except the first) has the incorrect format. A message
is output to the printer, and the contents of the input file are dumped to the
printer.

PROGRAMMER: Mary M. Hunt

ORIGINATOR: Dick Payne

DATE: May, 1987

I IL

V "e .

52

B.2 Sample Summary and Spectral Coefficient Files

EXAMPLE SUMMARY :'ITE

871207 0000)179 1.694 4.270 3.947 0.338 1.808 -'.589 0.219
871207 0030 D.143 1.515 4.301 4.025 0.335 1.806 -1.499 0.156
871207 0100).162 1.611 4.j03 3.974 0.329 1.868 -1.670 0.219
871207 0130 0.143 1.514 4.342 3.987 0.328 1.482 -1.656 0.219
871207 0200 0.109 1.320 4.323 4.090 0.332 1.267 -1.175 0.227
871207 0230).156 1.579 4.157 3.804 0.330 1.603 -1.845 0.227
371207 0300 2.149 1.542 4.186 3.826 0.324 1.960 -1.710 0.211
871207 0330).154 1:571 4.353 3.944 0.325 1.727 -1.535 0.172
871207 0400 3.151 1.554 4.109 3.815 0.323 1.637 -2.007 0.211
871207 0430 0.148 1.537 4.236 3.921 0.333 1.559 -1.865 0.219
81207 0500 3.142 1.506 4.199 3.891 0.337 1.538 -1.386 0.180
871207 0530 D.151 1.554 4.222 3.822 0.333 1.844 -1.584 0.211
871207 0600 0.129 1.438 4.283 3.933 0.339 1.449 -1.681 0.164
871207 0630 3.144 1.520 4.125 3.803 0.332 1.583 -1.643. 0.180
871207 0700 0.129 1.437 4.257 3.934 0.328 1.727 -1.950 0.1 0
871207 0730).137 1.479 4.312 3.981 0.334 1.511 -1.337 0.180
871207 0800 0.134 1.462 4.261 3.921 0.331 1.350 -1.870 0.156
871207 0830 0.123 1.400 4.154 3.784 0.328 1.569 -1.201 0.141
871207 0900 0.140 1.498 4.279 3.906 0.322 1.349 -1.783 0.180
371207 0930 0.118 1.376 4.176 3.817 0.328 1.599 -1.745 0.188
871207 1000 0.139 1.493 4.146 3.828 0.329 1.248 -1.656 0.227
871207 1030 0.137 1.480 4.225 3.873 0.325 1.912 -1.594 0.242
871207 1100 0.161 1.607 4.286 3.989 0.323 1.334 -1.837 0.219
871207 1130 0.157 1.587 4.093 3.833 0.327 1.775 -1.455 0.219
871207 1200 3.174 1.669 4.277 3.994 0.329 1.824 -1.941 0.211
871207 1230 3.165 1.625 4.171 3.904 0.316 1.811 -1.503 0.211
871207 1300).161 1.606 4.132 3.820 0.325 1.917 -1.695 0.211
871207 1330).182 1.706 4.179 3.890 0.329 1.937 -2.297 0.219
871207 1400 D.152 1.557 4.069 3.807 0.329 1.470 -1.719 0.211
871207 1430).135 1.469 3.915 3.687 0.329 1.507 -1.597 0.219
871207 1500 0.116 1.363 3.852 3.617 0.331 1.326 -1.565 0.234
871207 1530).090 1.199 3.811 3.540 0.331 1.274 -1.662 0.250
871207 1600 0.076 1.106 3.695 3.444 0.335 1.008 -1.140 0.281
871207 1630).071 1.063 3.742 3.456 0.340 1.006 -0.948 0.297
871207 1700).061 0.985 3.713 3.449 0.333 1.327 -1.175 0.266
871207 1730).058 0.962 3.827 3.521 0.335 1.083 -1.193 0.258
871207 1800 3.045 0.845 3.666 3.421 0.340 0.971 -0.885 0.273
871207 1830 '.040 0.797 3.778 3.461 0.333 0.960 -1.160 0.266
371207 1900).037 0.769 3.914 3.506 0.318 0.918 -0.95 0.031
871207 1930 0.037 0.768 3.646 3.353 0.336 0.881 -1.326 0.352
871207 2000).029 0.681 3.638 3.332 0.336 0.882 -1.084 0.320
371207 2030 1.038 0.783 4.160 3.628 0.334 0.826 -0.899 0.031
871207 2100 J.031 0.708 3.819 3.422 0.334 0.742 -0.731 0.031
871207 2130 .026 0.642 3.794 3.407 0.328 0.701 -0.916 0.219
871207 2200 .028 0.666 4.060 3.562 0.331 0.726 -1.114 0.031
871207 2230).031 0.701 3.755 3.319 0.329 1.101 -0.828 0.039
871207 2300 3.036 0.762 3.934 3.465 0.319 0.963 -I 527 0.039
871207 2330 0.039 0.794 3.649 3,307 0.332 1.041 -0.864 0.367

53

EXAMPLE SPECTPAL COEFFICIENT FILE

871207 0000 0.338
1.794e-001 4.202e-002 1.151e-002 1.694e+000 4.270e+000 3.947e+000
1.521e-003 2.123e-003 9.930e-004 4.544e-004 6.134e-004 5.251e-004
1.266e-003 1.258e-003 6.518e-004 1.660e-003 1.714e-003 1.693e-003
1.784e-003 2.406e-003 2.712e-003 3.712e-003 7.564e-003 7.172e-003
8.451e-003 7.249e-003 7.699e-003 7.396e-003 6.070e-003 8.658e-003
1.516e-002 4.073e-003 8.652e-003 3.287e-003 5.113e-003 3.192e-002
3.670e-003 3.765e-003 2.419e-003 3.424e-003 2.931e-003 2.849e-003
2.419e-003 1.702e-003 3.023e-003 1.064e-003 1.619e-003 1.097e-003
1.111e-003 1.345e-003 1.571e-003 1.756e-003 2.688e-003 9.681e-004
1.509e-003 1.064e-003 1.169e-003 9.299e-004 1.459e-003 9.414e-004
1.387e-003 1.163e-003 1.814e-003 9.508e-004 9.573e-004 1.021e-003

871207 0030 0.3'5
1.434e-001 3.335e-002 8.854e-003 1.515e+000 4.301e+000 4.025e+000
4.081e-004 3.735e-004 5.811e-004 9.967e-004 2.212e-004 4.078e-004
3.578e-004 6.921e-004 1.091e-003 1.049e-003 6.332e-004 1.625e-003
1.186e-003 1.990e-003 1.693e-003 2.471e-003 9.172e-003 7.223e-003
7.442e-003 5.578e-003 3.939e-003 7.944e-003 7.055e-003 6.176e-003
6.658e-003 4.078e7003 7.264e-003 4.044e-003 4.604e-003 4.952e-003
5.201e-003 2.250e-003 2.751e-003 3.003e-003 2.268e-003 1.458e-003
1.095e-003 1.728e-003 1.628e-003 1.667e-003 1.633e-003 1.688e-003
1.682e-003 8.227e-004 1.468e-003 9.174e-004 4.012e-004 1.086e-003
9.147e-004 7.824e-004 9.322e-004 9.837e-004 7.792e-004 2.324e-004
7.902e-004 2.304e-004 1.366e-003 6.920e-004 4.067e-004 6.495e-004

871207 0100 0.329

871207 2300 0.319
3.630e-002 9.228e-003 3.024e-003 7.622e-001 3.934e+000 3.465e+000
6.592e-004 1.363e-003 5.544e-004 4.989e-004 4.216e-004 5.727e-004
5.408e-004 8.280e-004 6.770e-004 5.573e-004 6.833e-004 8.843e-004
6.399e-004 4.463e-004 3.395e-004 1.142e-003 5.731e-004 1.058e-003
6.078e-004 3.798e-004 6.253e-004 3.435e-004 6.668e-004 6.047e-004
4.346e-004 5.735e-004 6.647e-004 4.998e-004 3.570e-004 8.270e-004
2.668e-004 3.364e-004 6.474e-004 5.715e-004 3.443e-004 5.461e-004
4.813e-004 4.069e-004 3.223e-004 7.230e-004 6.934e-004 8.518e-004
4.351e-004 9.662e-004 9.320e-004 7.094e-004 8.565e-004 7.157e-004
4.013e-004 9.158e-004 6.474e-004 4.990e-004 4.355e-004 7.243e-004
8.591e-004 3.298e-004 4.078e-004 6.336e-004 3.272e-004 2.947e-004

871207 2330 0.3-2
3.940e-002 1.080e-002 3.603e-003 7.940e-001 3.649e+000 3.307e+000
1.147e-003 6.062e-004 7.178e-004 4.431e-004 3.117e-004 3.731e-004
2.515e-004 3.437e-004 5.560e-004 7.961e-004 2.565e-004 5.421e-004
3.233e-004 6.972e-004 7.398e-004 6.406e-004 5.856e-004 8.345e-004
3.963e-004 5.108e-004 8.940e-004 6.360e-004 5.701e-004 4.726e-004
4.722e-004 2.435e-004 6.152e-004 3.119e-004 4.496e-004 8.527e-004
4.186e-004 3.132e-004 6.044e-004 3.686e-004 6.104e-004 7.428e-004
1.002e-003 1.141e-003 6.628e-004 1.636e-003 1.475e-003 1.493e-003
8.995e-004 2.014e-003 1.134e-003 8.393e-004 6.825e-004 5.866e-004
6.167e-004 5.766e-004 8.175e-C04 6.991e-004 3.341e-004 4.336e-004
4.621e-004 5.622e-004 3.541e-004 2.843e-004 4.939e-004 5.546e-004

UP'

-5--- V ~ .-..- ~ --- ..-. -. '- .,

V 2i i'. --- .~.:-~................................

- . - J VV4 A -. a. Z x -K - - K. .7W'W: - VX

54

B.3 Sample Printer Output:

Waverider data received startino at GMT Fri Aor 15 16:38:20 1988
Spectral file transferred to Red VAX.
Summary file transferred to Red VAX.

Seq. no. = 20 Significant wave heibt 1.019 -eters

Buovid = 185 Mean wave period = 5.39 seconds
Voltaae = 3251 Zero-uo-crossing wave oeriod = 4.72 seconds
Quadrant = 7 Peak ieriod = 11.64 seconds
Latitude = 4116 Maximum wave crest = 0.873 mters
Lonaitude = 7102 Minimum wave trough = -(;,.915 meters

Mean value of series '. ..

Soectral olot (vertical scale in m'm/Hz)-

0. 004 -

. .. .*0*

S 16 3 " 4 Z
Ie I" I seconds)

S *

%*

55

B.4 Program

File WRPROC.C

Program wrproc March, 1987

This program collects data from a serial port, computes the FFT,
and some statistics, stores things in various files, and sends
a file to the VAX.

Programmer: Mary M. Hunt
Originator: Dick Payne
Date: March, 1987

The functions called directly by wrproc are:
getset does needed initialization
funcno() returns value of function key struck, or zero if none
timup(starter) returns non-zero value when it is time to start

listening
datget gets to next set of data
convrt converts to wave heights and interpolates bad values
powspec computes power spectrum, etc.
doprnt prints computed parameters
putspc stores spectrum, etc. in disk file
putsml writes record to summary file, and sends to VAX
lpplot makes line printer plot

finclude <stdio.h>
#include <math.h>
#include <conio.h>
#include <pspecs.inc>
#include <chardef.inc>
#include <strdef. inc>
#include <process.h>

main(argc, argv
int argc;
char *argv[];{
int rtncd, nofunc, nbad, exstat,npts, good, savraw-0;
int rtncod, starter-0, prnuse-1;
char comnd[35];
FILE *prnout;

Set up optional command line argument
to redirect printer output.

if (argc > 1)

prnuse - 0;
prnout - freopen (argv1], "w", stdprn);
if (prnout NULL)

printf (" No good.\n");
)

shodat - 0;
timrec - 0;
getseto;

/ **Jk

56

Start main program loop.

while ((nofunc = funcno()) !/ 1) /* Check for function key */
(

Wait until time to start looking for data.

if ((rtncod - tinup(starter)
(
printf C " Waiting for data at %s\n", ctime(<ime));
starter - rtncod;
good - 0;
npts - datget (PORTNO, NOPTS);
if (npts - NOPTS) /* Check correct no. of points. */{

nbad - convrt (NOPTS); /* Convert to wave heights */
if C nbad < NOPTS/2) /* Check no. bad points */
{
good - 1;
rtncd = powspec (NOPTS); /* Find spectrum */
if (rtncd - -1)

{
fprintf (stdprn, " Data set rejected, max = min.\r")
putc (LINEFEED, stdprn);
good - 0;
doprnt (nbad);)

else if (rtncd - -2)
(

fprintf (stdprn, " Data set rejected. Mean value =
avrg);

good - 0;
doprnt (nbad);

}
else

{
putspc (nbad); /* Spectrum file */
putsml (nbad); /* Summary file */
doprnt (nbad); /* print parameters */
lpplot(nbad); /* Plot spectrum */

I
) /********** End of loop checking nbad *************/

else

good = 0;
fprintf (stdprn, " Too many bad values, %d\r",nbad);
putt (LINEFEED, stdprn);
fflush (stdprn);

) I /**.************** End of nopts - NOPTS loop ********/
rewind (jnkf);
exstat - 0;

/******** end of timup loop *********************

Check for F2 key - to send scratch file to VAX.

if (nofunc- 2

57

savraw -savraw;
if (savraw)

printf (" Raw data transfer enabled.\n");
else
printf (W Raw data transfer disabled.\n");I

Send scratch file

if (savraw && good && tiarec)

sprintf (cound, "PUT TMPFIL.DAT DSKB:WR%021d%04d.DAT",
lmday, timrec);

spawnlp (P_WAIT, "ftp.exe", "ftp.exe", "-u", "EO5 HCG1",
"REMSTAL","128.128.16.2", comnd, NULL);

good - 0;

Check for F8 Display raw data

if (nofunc - 8

shodat - -shodat;
if (c shodat)

printf C " Data display option turned on.\n");
else

printf (" Data display option turned of f.\n")
) .

/*********** End of while-loop ******************/
exit(exstat);

File COMPUT.C

This file contains routines which compute the power spectrum, etc.
They are:

powspec finds the power spectrum
comput finds the parameters S
rmean removes mean from one piece
ffean finds mean, max, min, of entire data set

Programmer: Mary Hunt
Date: Kay, 1987

#include <stdio.h>
#include <math.h>
#include <pspecs.inc>

1* --
Function to find power spectrum.
Uses the following: 5

fdmean
rmean
rfft05

NON.

58

comput

powspec ()

int npiece, 1, J, kc, plen, pow;
double zed, pi - 3.1415926535;
double sin(double);
float arg, xdiv, xdl, xd2;
float fdmeano;

find first differences,
after removing mean.

avrg -fdmean 0;
if (wmin - vax) /* if max -min, spectrum will be all 0*

return(-l); /~so do not compute it. *
if (avrg < MNMIN 11 avrg > MNXAX

return (-2) ;
plen -PLEN;
pow -POW;
for (i-a; i<NOPTS-l; i++)

datser~iJ - datser~i+l] - datser~i];
datser(NOPTS-lJ - datserNOPTS-2];

set spectrum -0

for (i-0; i<NSPEST, spctrm~i] -0; i1-i+)

start piece loop

npiece -0;

for (j 0; j < NOPTS; j +-PLEN

for i -0; icplen; i++
datuse~i] - datser~i+j];

rmean Cdatuse, plen);
rfftO5 (datuse, &pow, &plan)

add piece into spectrum

for (1-8k-a; k<NSTOT; i+-2,k++)

spctrm~k] - spctrm~k] + datuse(i]*datuse~i]
+ datuse~i+l]*datuse~i+l];

npiece -npiece + 1;

end of piece loop. Normalize.

xdl - 2.*npiece;
xd2 - xdl *plan;
xdiv - xd2 *plen;
for (k-a; k<60; k++)-S

arq - (k+4)*pi/plen;
zed - sin(arq);
spctrm[kJ - spctrm~kJ/(xdiv*zed*zed %

computo;I

59

return(O);

This function finds the desired parameters.

computo(

mnt i, isav;
float sum, sinai, sum2; -

float xmult, tien;
double fndscl();

tien - PLEN * SAI4INT;
sum- 0.;
sinai - 0.-;
sum2 = 0.;

for (i-0; i<NSPEST; i++

xmult - i + 4;
sum -sum + spctrm(i);
suml suml + xmult * spctrm~iJ;
sum2 =sum2 + xmult*xmult*spctrm(i];

params[O] sum;
params~lJ suml/tlen;
params(2] -sum2/(tlen*tlen);
params[3J 4. * sqrt(params(0J);
params(4) params(0J/paraims~l];
params[5] -sqrt (params[OJ/params(2J)

Find maximum spectral value, and plot scale

isav - 0;
spmax - spctrm(0];
for Ci-i; i<NSPEST; i++)

if (spctrm[i] > spmax

spmax -spctrm~iJ;
iuav -;

spscl - fndsci(spuax)
hgfrq - (isav+4) / 128.;
hgper - l.0/hgfrq;

return;

Function to remove the mean from one piece.

rmean(dats, len)
float dats[];
mnt len;

60

double sum;
int i;
float avg;

sum -0.0;
for i -0; i< len; i++)

sum - sum + dats(i];
avg -sum/len;

for i -0; i<len; i++
dats~i] - dats[iJ avg;

return;

This function finds the maximum value, minimum value, and mean
of the entire series. It then subtracts the mean from the
maximum and minimum. The function value is the mean.

--*

float fdmean C

double sum;
int i;
float avg;

sum - 0.0;
vvmax - 0.0;
wvmin - 100000.;
for (i-0; i<NOPTS; i++

sum -sum + datserli];
if (datser~iJ > wvmax

wvmax - datser[iJ;
if Cdatser(i] < wvmin)

wvmin = aat~erLL].

avg - sum/NOPTS;
wvinax : wvmax - avg;
wvmin -wvmin - avg;
return(avg);

File CONVRT.C

This file contains the following:
convrt
intrp
interp

Programmer: Mary M. Hunt
Date: April, 1987

#include <stdio.h>
#include <math.h>

61

#include <conio.h>
#include <pspecs.inc>

/*..
This function converts the input values to wave heights, and
replaces any values > MAXVAL with MAXVAL. It then calls intrp
for interpolation.

-- *

convrt (nopts
int nopts;

int nbad,i;
for (i=0; i<nopts; i++)

if (fabs(datser(i]) >= MAXVAL
datser(i] = MAXVAL;

else
datser(i] = datser[i]*CONFACT;

)
nbad = intrpo;
return(nbad);

Name: interp---
Date: March, 1987
Programmer: Mary Hunt
Purpose: To replace bad values in array 'datser' with

interpolated values, and to count the number of
interpolated values. Bad values are those equal
to MAXVAL.

Bad values at the start are replaced by the first good value,
and bad values at the end are replaced by the last good value.
The routine uses linear interpolation for the rest.

#include <pspecs.inc>

intrp()
{p

int i, istrt;
int nbad - 0;
int frstgd.- 0;
int lastgd - NOPTS-1;

/*
This part takes care of bad points at the start */

for (i-0; i<NOPTS && datser[i++] - MAXVAL;
frstgd -

for (i-0; i<frstgd; i++)

datser[i] - datser[frstgd];
nbad - nbad + 1;

}S
This does the same for the end.

for (i-NOPTS-1; i>-O && datser[i--] -- MAXVAL;)

p

62

lastgd = i;
for (i-NOPTS-l; i>lastgd; i--)

datser[i] - datserflastgd];
nbad - nbad + 1;

/*
Now take care of the middle section.

*1
for (i-0; i<NOPTS; i++

if (datser[i] -- MAXVAL)
istrt = i-1;
nbad= nbad + interp(istrt);

return(nbad);

Function to do interpolation

istrt is the subscript of the last good value before at least
one bad value. This function finds how many bad values
there are, and replaces them with linearly interpolated
values.

interp (istrt)
int istrt;

int i, iend, J, nint;
float diff, perdiff;
for (i-istrt+l; i<NOPTS && datser[i] -- MAXVAL;i++)

iend - i;
diff - datser[iend] - datser(istrt];
perdiff - diff / (iend - istrt);
for (j-l,i-istrt+l; i<iend; i++,j++

datser(i] = datser(istrt] + perdiff*j;
nint - iend - istrt - 1;
return(nint);

File DATDEC.C

This function reads records from the scratch file, one at a time,
and decodes them. If it can't understand a record, it returns
a negative value. Otherwise, it returns a value of zero.
Other functions used are valert, settim.

Programmer: Mary Hunt
Date: May, 1987

#include <studio.h>
#include <math.h>
#include <pspecs.inc>
#include <chardef.inc>

K.K%6W

63

datdec(nopts)

char datbfr(52];
int nchrs, buflen, rtnval, mnstrt;
int ipntr, ii j, ip;
long xmitim, datim(4];

buflen =48;
ipntr -0;

First record has sequence #

fgets (datbfr, 50, jnkf)
if (memcp(datbfr,scnd,4) =0) /* if record starts with cmd:,*/

fgets (datbfr, 50, jnkf)/* skip the record *
if (memcmp(datbfr,stchr,4) !=0)

seqno =-1;
else

sscanf C&datbfr[6J, 11%3d", &seqno)

Next record has transmission time.

fgets (datbfr, 50, jnkf)
if (memcmp(datbfrstrc2,4) 0= 0

fprintf (stdprn, 11 Unidentified record \r")
putc (LINEFEED, stdprn);
M fush (stdprn);
return(-l);

sscanf (&datbfr(12J, 11%61d", &xmitim)

Next record has start time, lat, long.

fgets (datbfr, 50, jnkf)
if (memcrp(datbfr,strc3,4) !- 0

fprintf (stdprn, " -Unidentified record \r")
putc (LINEFEED, stdprn);
f flush (stdprn);
return (-1);

for (i-0, ip-6; i<4; i++, ip +-7
ascanf (&datbfr~ip], 11%51d", &datim(i))

latude -datim[2J % 10000;
quadrnt -datim(2J/10000;
longude -datim[3J;

Record 4 has '999'. Skip it.

fgets (datbfr, 50, jnkf)

if (emcmp(datbfr,strc4,3) 1- 0

fprintf (stdprn, " Unidentified record \r")
putc (LINEFEED, stdprn);
fflush(stdprn);
return (-1) ;

Now we start the actual data.U

rlJ*LAAEI ~ ~ 1~IVLII ' As' A A J fv FYl jvv VI VX YK ! M P I 13 ?WA w r% WIT'dWrXA vF Will PW Nn

64

fgets (datbfr, 50, jnkf);
while (memcmp (datbfr, three, 3) != 0)
(

for (i=ipntr,j=0; j<buflen; i++,j+=6
sscanf (&datbfr[j], "%6f", &datser[i]);

ipntr +- 8;
fgets (datbfr, 50, jnkf);

rtnval = ipntr;/,
This record should have the buoyid and voltage.

for (i=0, ip-5; i<4; i++, ip +=7)
sscanf (&datbfr[ip], "%51d", &datim(i]);

buoyid = datim(0] % 1000;
voltage = datim(2] % 10000;
if (voltage < 1000

valerto;/*
Start processing.

mnstrt xmitim % 100;
settim (mnstrt);
return(rtnval);

/*
File DATGET.C

Function datget:
This function inputs and decodes one data set.
It uses the following:

intrw,enrupt input interrupt routine
chrdy waits for next data record
prnrdy checks printer status
datdec decodes data set
dumpf dumps data set to printer

The arguments are:
int port RS232 port number (1 or 2)
int nopts expected number of input data values

Return value is the actual number of points, or < 0 for error.

Programmer: Mary Hunt
Date: May, 1987

#include <stdio.h>
#include <math.h>
#include <time.h>
#include <pspecs.inc>
#include <chardef.inc>

datget(port, nopts
{
char inbfr[2][52];

----------- -

65

int nchrs, rtnst, buflen, secwt, npts;
int isub, recnt;
long ntime;

buflen = 52;
irdy = 0;
wprt (PORTNO, CQ);
wprt (PORTNO, CARET);
wprt (PORTNO, CARET);
npts -0;

/*
Call to initialize the interrupt routine

rewind (jnkf);
intrw (PORTNO, inbfr, &irdy, &nchrs, &rtnst, buflen);

Get all data and-store in temp. file.

secwt = 360;
isub = 0;
recnt = 0;
strcpy (inbfr, "JUNK");
while (memcmp(&inbfr[isub)[0], enchr, 2) !- 0) /* this checks */

/* for NNNN */
if (funcno() == 8) /* check for F8 */

shodat = -shodat;
if ((isub = chrdy(secwt,&ntime)) < 0) /* wait until data */

goto timout; /* ready or timeout*/
irdy - 0;
if (nchrs > 1 && inbfr(isub][0] != QUEST) /* skip record if */

/* ? or no data */
secwt = 60;
inbfr(isub][nchrs] = '\n';
inbfr(isub](nchrs+l] = NULL; /* add NULL and */
fputs (&inbfr[isub][0], jnkf); /* store in scratch file */ *
recnt++

if (shodat)
printf (" %s", &inbfr[isub](]); /* display record */

if (recnt -1)
ltime - ntime; /* save start time of 1st record */

I I* found 'NNNN' *I

Turn off interrupts, and save start time.

enrupt (PORTNO);
mhtim - gatime (&1time);
timrec - (mhtim -> tin_hour) * 100; S
if (mhtim -> ta min > 30)

tiarec - timrec + 30;
/*

Check if printer available

if (prnrdy() != 0

printf (" Printer unavailable. Will output to screen.\n");
freopen ("CON", "w", stdprn);

/*

r~r *~~ A e F' ' .- .~..... p. . - p ~ t.

66

Output line to printer

fprintf (stdprn, " Waverider data received starting at GMT %s\r",
asctime(mhtim));

fflush (stdprn);

lmday = ahtim -> tmmday;
lmon = (mhtim -> tm mon) + 1; /* create date */
lyear = mhtim -> tmyear; /* for file
filtim = lyear*10000 + lmon*100 + lmday; /* name */
rewind (jnkf);
npts = datdec(nopts); /* decode file
if (npts ' nopts) /* if an error, */

dumpf (recnt); /* dump file to printer */
npts = -1;

return(npts);/*
We go here for a timout.

*/ timout:
fprintf (stdprn, " Timed out after %d records\r", recnt);
putc (LINEFEED, stdprn);
fflush (stdprn);
enrupt (PORTNO);
if (recnt > 1)
dumpf (recnt);

return(-2);

File DOPRNT.C

This file contains doprnt and valert.
Function doprnt outputs input and computed parameters
to the printer.
There is one argument: int nbad number of interpolated

points

Programmer: Mary Hunt
Date: May, 1987

#include <stdio.h>
#include <pspecs.inc>
#include <chardef.inc>

doprnt(nbad)
int nbad;

char prbuf[81];
int i, k;
putc(LINEFEED, stdprn);
for (i=0; i<80; i++

prbuf[i] = BLNK;
k - sprintf (prbuf+3, "Seq. no. %d", seqno);
prbuf[k+3] - BLNK;
sprintf (prbuf+30, "Significant wave height = %6.3f meters\r",

.- /.'

67

params(3J);
fputs Cprbuf, stdprn)
putc (LINEFEED, stdprn);l

for (i=0; i<80; i++
prbuf~i] BLNK;

k = spriritf (prbuf+3, "Buoyid =%d", buoyid)
prbuf[k+3) BLNK;
sprintf (prbuf+30, "Mean wave period =%5.2f seconds\r"I,

params(4));
fputs (prbuf, stdprn)
putc (LINEFEED, stdprn IV;I

for i =0; i<80; i++
prbuf~i] BLNK;

k = sprintf (&prbuf[3), "Voltage =%d"I, voltage)
prbuf~k+3) BLNK;
sprintf (prbuf4-30, "Zero-up-crossing wave period =%5.2f seconds\r",

params(5]);
fputs (prbuf, stdprn)
putc (LINEFEED, stdprn)

for i =0; i<80; i++
prbuf(i] =BLNK;

kc = sprintf Cprbuf+3, "Quadrant =%d", quadrnt)
prbuf(k+3) BLNK;
sprintf (prbuf+30, "Peak period =%5.2f seconds\r",

hgper);
fputs (prbuf, stdprn)
putc (LINEFEED, stdprn)

for (1=0; 1<80; i++
prbuffi] =BLNK;

kc = sprintf Cprbuf+3, "Latitude =%d"I, latude)
prbuf~k+3] BLNK;
sprintf (prbuf+30, "Maximum wave crest =%6.3f meters\r",

wvmax);
fputs (prbuf, stdprn)
putc (LINEFEED, stdprn) .

for i-1=; 1<80; i++)
prbuf~i) - BLNK;

kc = sprintf Cprbuf+3, "Longitude = %d"I, longude)
prbuffk+3J BLNK;
sprintf (prbuf+30, "Minimum wave trough =%6.3f meters\r",

wvzin);
fputs (prbuf, stdprn)
putc CLINEFEED, stdprn)

putc CLINEFEED, stdprn)
fprintf (stdprn, " Spectral plot (vertical scale in m*m/Hz) :\r")
putc (LINEFEED, stdprn)
putc (LINEFEED, stdprn)
f flush (stdprn)

return;

1*--- ---------

This routine is called when the voltage is < 1000.

68

It rings the terminal bell 10 times and prints a warning message.
---*

valert()

mnt i;
char warn(3J;

warn(0J = BELL; warn(l) NULL;
for (i=0; i<10; i++)

printf ("%s", warn)
fprintf (stdprn, " * Warning: low voltage ******rI)
return;

File DUMPF.C
--------------------------------====-

Function dunpf
This function dumps contents of the scratch file to the printer.
It is called when there is some kind of input error.

One argument: mnt recnt Number of records in file.

Programmer: Mary Hunt
Date: May, 1987

#include <stdio.h>
#include <chardef.inc>
#include <pspecs.inc>

dumpf (recnt)
int recnt;

mnt i-;
long lctm;
char datbfrf 52];

rewind(jnkf);
time (&lctz);
putc (LINEFEED, stdprn);
fprintf (stdprn, "File dump at %s\r", ctime(&lctm))
putc (LINEFEED, stdprn);
putc (LINEFEED, stdprn);
f flush (stdprn) ;

for (i=0; icrecrit; i++

fgets (datbfr, 50, jnkf);
fprintf (stdprn, "%s\r", datbfr)
putc (LINEFEED, stdprn);

putc (FFEED, stdprn)
f flush (stdprn)
return;

J00

69

/* -

File GETSET.C

Function getset()
This function does preliminary initialization tasks:

1. Checks if printer ready.
2. Outputs message to terminal and printer
3. Opens RS232 port
4. Sends initial characters to get port ready.
5. Opens scratch file.

Uses the following routines:
prnrdy
prtset
wprt

Programmer: Mary Hunt
Date: May, 1987

#inlud -tim-- ----

#include <time.h>
include <stdio .h>
#include <pspecs.inc>
#include <chardef.inc>

getset(prnuse)
mnt prnuse;

long strtim, nextim;
char oubf[8], warn[3];
int i;

time(&strtim);
mhtim = gmtime(&strtim);

**Check if printer is ready.

if (prnrdy().=' 0 && prnuse)

warn[0] - BELL; warn(1] = NULL;
for (i-0; i<lo; i++) printf ("%s", warn);
printf (" Printer not ready. Please fix and restart program.\n")
exit(l);)

/* ** ..

Display greeting to user

printf (" Program wrproc, waverider processing.\n");
printf (" Copyright (C) 1987, Woods Hole Oceanographic Institution.\n") 5
printf (" All rights reserved.\n\n");
printf (" Place an empty formatted disk in Drive B,\n");
printf (" and press <RETURN> to start.\n");
getchar(;

/* **

Send one line to printer S

V V

I

70

fprintf (stdprn, " Program wrproc, start of run %s\r",
asctime(mhtim));

putc (LINEFEED, stdprn);
putc (LINEFEED, stdprn);
fflush (stdprn);

prtset (BAUD, PORTNO);/* *** Sets up COMI ****

wprt (PORTNO, CQ);
wprt (PORTNO, CARET);
************************* ***** **** **** ****** ** ***** ** ****

This next code sets echo off and conversation mode

wprt (PORTNO, CC); /* Puts PL1000 */
wprt (PORTNO, CC); /* in command */
wprt (PORTNO, CC); /* mode. *//* **

Wait at least one second

time(&strtim);
do

time (&nextim);
while (nextim-strtim < 2);

sprintf (oubf, "E OFF"); /* Turn
oubf[5] - CARET; oubf[6] - NULL; /* ECHO
ouprt (PORTNO, oubf); /* OFF */

sprintf (oubf, "CONV"); /* Put PL1000 */
oubf[4] - CARET; oubf[5] - NULL; /* in conversation */ .
ouprt (PORTNO, oubf); /* mode */

Tell PL1000 to go
wprt (PORTNO, CV
wprt (PORTNO, CQ);

/* ***~********************N

Open scratch file TMPFIL. DAT

jnkf - fopen (tfname, "w+");
if (jnkf - NULL) N

(
printf (" Cannot open scratch file.\n");
exit(l); :-

return;

File LPPLOT.C

This file contains:
Ipplot line-printer plot of spectrum
fndscl determines plot scale

--

71

Function ipplot, creates printer plot of spectrum.
Checks for printer out of paper (happens in middle of plot.).

Programmer: Mary Hunt S

Date: May, 1987
#include <stdio.h>

#include <math.h>

#include <pspecs.inc>
#include <chardef.inc>

lpplot(nbad
int nbad;

int i, j, dotinx, isav,k;
float dotpos;
int nlin = 40;
char prbuf[81];
double fndscl();
unsigned pchk, prnrdy();

Fill buffer with blanks. */

for (i=0; i<NSPEST; i++)

for (j=0; j<nlin; j++)
spottj][i] ' '"

I

Scale spectrum and store in print buffer.

for (i=0; i<NSPEST; i++
{
dotinx = nlin*spctrm[i]/spscl;
if (dotinx == nlin

dotinx = nlin-l;
for (j = dotinx; j>= 0; j--

spot(j][i) = '*';

/*
Now, we encode one row at a time, and output to
the printer. In addition to the actual spectrum, there
are tic marks and labels for the vertical axis, and
the actual axis.

putc (CARET, stdprn); S

putc (LINEFEED, stdprn);
fcr (j-nlin-l; j>=0; j--)

for (i=0; i<81; i++) /* blank the print line *W
prbuf[i] = BLNK;

if (j =- nlin-i) /* first line */
(A

k - sprintf (prbuf, "%ig", spscl);
prbuf[k] - BLNK;
prbuf[8] - MINUS;

if (j = (nlin-l)/2) /* middle line */

72

k = sprintf (prbuf, "%19", spscl/2.0)
prbuf[k) = BLNK;
prbuf(8] = MINUS;

if (j -- (nlin-l)/4 H =3*(nlin-1)/4)/* 1/4 or 3/4 *
prbuf[B] MINUS;

if (j - 0) * last line of spectrum

k = sprintf (prbuf, 11%lg", 0.0)
prbuf~k] - BLNK;
prbuf[S) = MINUS;

prbuff9] = ULINE;

for (i -0; i<NSPEST+l; i++
prbuf~i+10] = spot[j]li);

prbuf[72] - NULL;

Chack printer

pchk = prnrdyo;
if (pchk != 0 &&pchk != 0X8000

printf (" Printer unavailable. Will output to screen.\n");
freopen ("CON", "w", stdprn)

fputs (prbuf, stdprn); /* This outputs the line *
putc (CARET, stdprn)
putc (LINEFEED, stdprn)

This gives a line of under-score characters

for (i-0; i<10; i++)
prbuf[i] -BLUK;

for (i-10; i<NSPEST+ll; i++
prbuf~i] - USCR;

prbuf(72) - NULL;
fputs (prbuf, stdprn)
putc (CARET, stdprn)
putc (LINEFEED, stdprn)

This makes tick marks on period axis

for (i-0; i<80; i++
prbuf~iJ - BLNK;

prbuf[10] ULINE;
prbuf[14] -ULINE;
prbuf[22J ULINE;
prbuf(271 - ULINE;
prbuf(38] - ULINE;
prbuf[49] -ULINE;
prbuf(70] -ULINE;
prbuf[72J NULL;
fputs (prbuf, stdprn)
putc (CARET, stdprn)
putc (LINEFEED, stdprn)

/4*

73

Label the tick marks

for (i=0; i<80; i++
prbuffi) =BLNK;

k = sprintf (&prbufjlo], "132")
prbuf~lo+k) =BLNK;

k = sprintf C&prbuf(14], "116")
prbuf~k+141 =BLNK;

k - sprintf (&prbuf[22), "18")
prbuf~k+22) BLNK;

kc - sprintf (&prbuf[27], "16")
prbuf~lc+27] =BLNK;

kc = sprintf (&prbuf[38), "4"W1
prbuffk+38) BLNK;

kc = sprintf (&prbuf[491, "13"11
prbuftk+49] BLNK;

sprintf (&prbuf[7jl, "2"11
fputs (prbuf, stdprn)
putc (CARET, stdprn)
putc (LINEFEED, stdpri)

Axis label

for (i=0; i<80; i++)
prbuf[i) = BLNK;

sprintf (&prbuf[3ll, "period (seconds)")
fputs (prbuf, stdprn)
putc (CARET, stdprn)
putc (FFEED, stdprn)
putc (LINEFEED, stdprn)

f flush (stdprn);

return;

double fndscl (maxsp)
float maxsp;

float dec, xmd:
double ymax;
mnt intop, mextop;
double dsinax, dextop, ten =10.;

dsmax - maxsp;
dec =loglO (dsmax)
if Cdec < 0.
dec -dec - 1.0;

mextop =dec;

dextop =mextop;

xmd = pow (ten, dextop)
intop maxsp /xmd + 1.0;P.
ymax =intop * ,ad;

74

return (ymax);
)

/*
File OUPRT.C

Function ouprt
Outputs a string to an RS232 port.
Arguments are:

int port Rs232 port number (1 or 2)
char oubf[] String to be output to port

(must terminate with NULL)
Uses function wprt to output each character.

Programmer: Mary Hunt
Date: May, 1987

#include <stdio.h>

ouprt (port, oubf
int port;
char oubf[] ;

int i;

i= 0;
while (oubf[i] != NULL

wprt (port, oubf(i]);
i++;

return;

/*
File PUTDAT.C

Routines to create the required files and store the
data in them.

Programmer: Mary Hunt
Date: March, 1987

#include <time.h>
#include <stdio.h>
#include <pspecs.inc>
#include <process.h>
#include <chardef.inc>

This function stores spectral estimates in a file. The file name is
created from C, followed by 2 digits each of year, month, and day.
File type is .DAT. File is opened 'append', so all spectra for a

75 2

day are in the same file.

putspc (nbad)
mnt nbad;

FILE *fp;
int i j, K;
char comnd(35];
sprintf (fname, "C%061d.DAT", filtim);
sprintf (fnamb, "B:C%061d.DAT", filtim);

if ((fp = fopen(fnamb, "a")) != NULL)
{

fprintf (fp, "%04d %5.3f\n", timrec, avrg);
for (i=O; i<NPARM; i++)

fprintf (fp, "%12.3e", paramsci));
fprintf (fp, "\n");

for (i=O; i<NSPEST; i +=6{
for (j=i, k=0; k<6; j++,k++

fprintf (fp, "%12.3e", spctrm[j]);
fprintf (fp, "\n");

}
fclose (fp ;/*

Send to Red VAX

sprintf (comnd, "PUT %s %s", fnamb, fname);
k = spawnlp (PWAIT, "ftp.exe", "ftp.exe", "-U",

"133_REP1", "DICK", "128.128.16.2",
comnd, NULL);

if k == 0)

printf (" Transferred spectral file.\n");
fprintf (stdprn, " Spectral file transferred to Red VAX.\r");

I
else
C
printf (" Spectrum transfer failed.\n");
fprintf (stdprn, " Spectral file transfer failed.\r");

putc (LINEFEED, stdprn); it
fflush (stdprn);

/= **

Could not open file

else

printf (" Unable to open spectrum file.\n");
fprintf (stdprn, " Unable to open spectrum file.\r"); ..
putc (LINEFEED, stdprn);

return;

This function opens summary file, stores one record in it,

it' ' p PV1~tjv~rc~e qcsry C~* %'%W%~ , V V '.% * "

76

and sends updated file to VAX. File name, etc. same as for
spectrum file, except starts with S instead of C.

putsml (nbad)
int nbad;

FILE *fp;
int i, k;
char comnd[35];

sprintf (fnam2, "S%061d.DAT", filtim);
sprintf (fnamb2, "B:S%061d.DAT", filtim);
if ((fp = fopen (fnamb2, "a")) M= NULL

fprintf (fp, " %061d", filtim);
fprintf (fp, " %04d %6.3f", timrec, params[0]);
for (i=3; i<6; i++)

fprintf (fp, "%8.3f", paramsci]);
fprintf (fp, "%8.3f", avrg);
fprintf (fp, "%8.3f", wvmax);
fprintf (fp, "%8.3f", wvmin);
fprintf (fp, "%8.3f\n", hgfrq);

fclose(fp);

Send summary file to file-server (Red VAX for now.)

sprintf (comnd, "PUT %s %s", fnamb2, fnam2);
k = spawnlp (PWAIT, "ftp.exe", "ftp.exe", "-U",

"133 REPI", "DICK", "128.128.16.2",
comnd, NULL)

if (k - 0)

printf (" Transfer successful\n");
fprintf (stdprn," Summary file transferred to Red VAX.\r");

else

printf (" Transfer failed\n");
fprintf (stdprn," Summary file transfer failed.\r");

putc (LINEFEED, stdprn);
fflush (stdprn);

Cannot open summary file

else

printf (" Unable to open summary file.\n");
fprintf C stdprn, " Unable to open summary file.\r");
putc(LINEFEED, stdprn);

return;

File RFFT05.C

0?-

77

This is a function to do a FFT on a time series of real numbers.
All arguments are passed as pointers. The arguments are:

x - array of real numbers
pow - power of 2
len - length of series

len must - 2**pow.

Coefficients are returned in the order Cos, sine, cos, sine, etc.

Acquired from Eddie Scheer, April 1987
--- *

#include <math.h>
#include <stdio.h>

rfftO5 (x,pow,len)
float *x;
long *pow,*len;

double wr,wi,arg;
mnt length,power, length2;

length= *len;
power- *pow;
length2 -length;
length/-2;
power-

/* bit reverse *

register irit i,mask,j;
register float *pl,*p2,t;

for (i-2; i<length2-2; i+-2)
for (mask=2, j=O; mask<length2; mask«<=l)

4 if (i &mask) j++;

if (i<j)
p1 = X+i;
p2=- x+j;
t = *pl;
*(pl+.) = *p2;
*(p2++) = t
t = *pl;
*pl = *p2;
*p2 = t

register double tr,ti,ur,ui;
register mnt le,i;
register float *plr, *pli, *p2r, *p2i;
mnt J,l,1e2;

le=2;
for (1-0; l<power; 1++)

le <<- 1;

78

le2 =le>>l;

ur=l.O0;
ui=O.O0;
arg - 3.141592653589793 /(1e2 >l);
wr-cos (arg) ;
wi- -sin(arg);
for (J-0; J<1e2; J+-2)

plr -x+j;
p11 - plr+l;
p2r - plr+1e2;
p21 - pzr+l;
for (i-j; i<length2; 1+-le)

tr - *p2r * ur - *p2i * ui;
ti - *p~r * ui + *p2i * ur;
*pzr - *plr - tr; I

*p2i - *pli - ti;
*plr +- tr;
*pli += ti;
pir +- Ie; 1
pi +- le;
p2r +- Ie;
p21 +- Ie;

t= ur*wi - ui*wr;
tr = ur*wr + ui*wi;
ur = tr;

register float *plr, *pli, *pzr, *p2i;
register double ur,ui,t,xer,xei,xor,xoi;
register int k;
ur-l.O;
ui=O. 0;
arg = 3.141592653589793 /length;
wr=cos (arg) ;
wi- -sin(arg); 1

x(length2]-x[O);
x(length2+1)=x(l];
plr = x
p11 - x+1;
p2r - x+length2;
p2i - p2r+l;
for (k-0; k<-length; k+-2)

xer-(*plr + *p2r)/2.O;
Xei-(*Pli - *p21)/2.0;
Xor=(*pli + *p21)/2.0;
xoi-(*p2r -*plr)/2.0;

t - xor~ur -xoi*ui;

xoi - xor*ui + xoi*ur;
xor - t;
*(plr++) = xer + xor;
plr++;
*(pli++) - xei + xoi;
pli++;
*(p2r--) - Yer -xor;

p2r--;

*(p21--) -xoi -xei;I

$~I'-.p I*d':'d-- %j~ - . .d:

79

t = ur*wr - ui*wi;
ui = ur*wi + ui*wr;
ur = t;

File SETTIM.C

Function settim
This function checks to see if the PS time and the PL1000 time
are the same (to the minute). S
If not, it resets the PL1000 time.
One argument: int mnstrt start minute of xmission

Uses function ouprt to send messages to PLI000.

Programmer: Mary Hunt
Date: May, 1987

#include <time.h>
#include <stdio.h>
#include <pspecs.inc>
#include <chardef.inc>

settim(mnstrt)
int mnstrt;

struct tm *timadr;
int min, hour, year, month, mday, secnd, wday, rtnval;
char oubf[15];
long ntime;

rtnval - 0;
timadr = gmtime(<ime);
min = timadr -> tm min;

if (min !- mnstrt

time(&ntime);
timadr - gmtime(&ntime); 0
min - timadr -> tmmin;

/* I just set the minute, skip hour, day, etc. */
/* hour = timadr -> tmhour;

mday - timadr -> tm mday;
month - (timadr -> tm mon) + 1;
year = timadr -> tmyear; */
secnd - timadr -> tmsec;

/* wday = timadr -> tm wday;
printf (" wday = %d", wday); */

oubf[OJ] CQ; oubf[l] = CARET; oubf[2] = CARET; oubf[3] = LINEFEED;
oubf[4] - NULL;
ouprt (PORTNO, oubf);

4b

80

oubf[O] = CV; oubf[l] =CQ;

ouprt (PORTNO, ouibf)

oubf[O] = CQ; oubf(l) CARET;
ouprt (PORTNO, oubf)

sprintf (oubf, 11 CONy")
oubffO] CQ; oubfr5] =CARET; oubf(6] = LINEFEED; OubfC7) = NULL;
ouprt (PORTNO, oubf)

oubf[O) = CV; oubf(l) CC; oubf[2) =CARET; oubf[3] LINEFEED;
oubf[4] = NULL;
ouprt (PORTNO, oUbf

Again, skip year, month, etc. *

1* sprintf Coubf, "SCL 3,19%d", year)
oubf[1O) CV; oubf[11) = CARET; oubf[12] = NULL;
ouprt (PORTNO, oubf);

sprintf (oubf, "SCL 4,%3d", month)
oubf[91 CV; oubf[lOJ = CARET; oubf[1l7 = NULL;
ouprt (PORTNO, oubf);

sprintf (oubf, "SCL 5,%3d", mday)
oubf[9) CV; oubf[1OJ = CARET; oubf(l) = NULL;
ouprt (PORTNO, oubf);

sprintf (oubf, HSCL 6,%2d". Mday)
oubffs] =CV; oubffgl CARET; oubf(lO) NULL;
ouprt (PORTNIO, oubf)

sprintf Coubf, "SCL 0,%3d", hour)
oubf[9] CV; oiibf(lOJ m CARET; oubfliI] =NULL;
ouprt (PORTNO, oubf);

sprintf (oubf, "SCL 1,%3d", min) /* This sets minute *
A. oubf[9] =CV; oubf(1OJ = CARET; oubf(ll] = NULL;

ouprt (PORTNO, oubf);

sprintf Coubf, "SCL 2,%3d", secnd); /* and second *
oubf(9) =CV; oubf[lOJ CARET; oubf[ll] = NULL;
ouprt (PORTHO, oubf)

sprintf Coubf, "RUN")
oubf(31 CARET; oubf[4] = LINEFEED; oubf[5) = NULL;
ouprt (PORTNO, oubf);

fprintf (stdprn, " Time reset to %s\n", ctime(&ntime))
putc (CARET, stdprn);

1* putc (LINEFEED, stdprn ~*
pritf 11Tim reetto %s\n", ctime(&ntime))

return (rtnval)

File TIHUP.C,UP

Function timup
This function tells the program when to start ooking for data.
If 'starter' = 0 (first time), it waits until either 5 minutes
or 35 minutes past the hour. If 'starter' = 1, it waits until
5 minutes past the hour, and if 'starter' = 2, it waits until
35 minutes past the hour. In any case, the return value should v
be the next value for 'starter'.

Programmer: Mary Hunt
Date: April 1, 1987

#include <stdio.h>
#include <time.h>

#include <pspecs.inc>
#include <chardef.inc>

timup(starter)
int starter;

long ktime, min;
int tchk, rtnval;

time(&ktime);
min = ktime/60;
tchk = min % 60;

rtnval = 0;
if (starter == 0)

if (tchk >= 5 && tchk < 8)
rtnval = 2;

if (tchk >= 35 && tchk < 38)
rtnval = 1;

else if (starter == 1

if (tchk >= 5 && tchk < 8)
rtnval = 2;

else if (starter - 2

if (tchk >- 35 && tchk < 38)
rtnval - 1;

ltime ktime;
return (rtnval);

This function checks to see if the next input record is ready.
It first sends XON to the port, and checks for data ready.
If not ready after a specified length of time, returns -1 to
indicate time-out.

- - - - - - - - - - - ==== ==%

82

chrdy(secwt,ntime)
int secwt;
long *ntime;
(

long outime, testim;
int rtnval, scwt2 = 5;

time (&outime);
do
{
wprt (PORTNO, CQ); Send XON */
time (ntime);
do

(
if (irdy.= 0
{

rtnval = irdy - 1;
return (rtnval);

)
time (&testim);

while (testim-*ntime < scwt2

while testim-outime < secwt)
rtnval = -1;
return(rtnval);

TITLE ROUTINE TO CHECK FOR USER INTERRUPT
NAME funcno

THE PURPOSE OF THIS ROUTINE IS TO ALLOW A FORTRAN
PROGRAM TO TELL IF ANY KEY HAS BEEN STRUCK. THE
ROUTINE IS ACCESSED AS AN INTEGER*2 FUNCTION, WITH
NO ARGUMENTS: ITEST = IGCHR()
ON RETURN, THE FUNCTION VALUE IS ZERO IF NO KEY HAS

a BEEN STRUCK. IF A KEY HAS BEEN STRUCK, THE 8 LOW-ORDER
BITS OF THE FUNCTION CONTAIN THE ASCII CODE OF THE
CHARACTER, AND THE 8 HIGH-ORDER BITS CONTAIN THE SCAN
CODE. (?) FOR THE FUNCTION KEYS, THE ASCII CODE WILL
BE ZERO, AND THE SCAN CODE WILL BE 3BH THROUGH 44H.
THE ROUTINE USES BIOS, INTERRUPT 16H TO DO ITS WORK.

PROGRAMMER: MARY HUNT
DATE: FEBRUARY 1, 1985

-TEXT SEGMENT public byte 'CODE'
ASSUME CS:_TEXT

funcno PROC NEAR
PUBLIC funcno

MOV AH,I ;SET AH=1 TO SEE IF A
INT 16H ; A CHAR. IS THERE
JNZ GETCHR ; IF SF=0, THERE IS ONE
MOV AX,0 ; NO CHAR., SET AX = 0,
JMP GOHOME ; AND RETURN

GETCHR: MOV AH,0 ; THERE IS A CHAR.,

83

INT 16H GO GET IT..
cmp al,O
je gfun
mov ax,O
imp gohome

gfun:
MOV AL,AH
MOV AH,O
SUB AL, O3AH
cmp al,10
jle gohome
mov al,O

GOHOME: RET
_funcno ENDP

-TEXT ENDS
END

NAME INTRW
INTRW.l March 25, 1987
Routine to handle interrupts from RS232 port 1,
port 2, or both.

This routine has three parts:
1. Initialization part, does the following:

a. Sets up arguments to be used by interrupt part-
port number (1 or 2)
buffer address
ready flag, pointer
number of characters returned
status indicator, 0 for OK.

c. Stores address of interrupt routine in interrupt vector
d. Enables interrupts.

2. Interrupt part
a. Save registers
b. Get character and store in buffer
c. Increment pointer
d. If ASCII <E>, <*>, or buffer full, set ready flag

Note: LAL5000 sends ASCII EOF chars. when data block
complete. INTCC discards <CR>,<LF>,<NULL>,<O>,<F>

e. Restore registers.
3. Completion part

a. Inhibit interrupts
b. Restore original contents of interrupt vector

********* Original program called INTCM ***************

Programmer: Mary M. Hunt
Date: August, 1985

Modified by G. H. Power - 16 Oct., 1985
* 1. Will ignore null record, ie., LF only.
* 2. Int. routine saves cx.

3. Ignores null char (OOH)

* sininsinsss********.

Modified for medium memory model Microsoft C compiler =
* by: G. H. Power Jan. 18, 1987

I cE% -*:-v ~ q

I"

84

Calling sequence(port no.,baud code,*buffer,*ready flag,
*chars. rcvd,*status,length buffer)

Items preceeded by <*> imply near pointers to user's
data area

Modified again for small memory model Microsoft C =

by: M. M. Hunt March 25, 1987
Also, end of record is now signalled by <CR>
Ignores <LF>.
Does not set up port; removed port no. and baud code from

; argument list.
Also, sends XOFF at end of record. Use must send XON

* when ready.

Define some constants.

LCR EQU OOFBH ; Line Control Register
IER EQU 0OF9H ; Interrupt Enable Register
MCR EQU OOFCH ; Modem Control Register
LSR EQU OOFDH ; Line Status Register
RBR EQU 0OFBH ; Receiver Buffer Register

LINFD EQU OAH ; ASCII code for line feed
CARET EQU ODH ; ASCII code for carriage return
NULLCHR EQU OOH ; ASCII code for null
ASTRISK EQU 2AH ; ASCII code for <*>
ASCB EQU 42H ; ASCII code for
ASCE EQU 45H ; ASCII code for <E>
ASC 0 EQU 4FH ; ASCII code for <O>
DOLL EQU 24H ; Dollar sign
XOFF EQU 13H ; ASCII code for XOFF

Define offsets within data area

DATOFF STRUC
ADRCHB DW ? ; address of character buffer
ADRNCH DW ? ; address of number of characters
ADRPNT DW ; ready flag/pointer
ADRST DW ; status indicator
VECSV DD ? ; original contents of interrupt vector
LENSTR DW ? ; actual length of character buffer
NCHARS DW ; local copy of number of characters
MYFLG DW ; local copy of ready flag
MYST DW ; local copy of status indicator
PNTSTR DW ? ; string pointer
PORT DW ? ; to define port numbers (0,1)
P12INT DB ? ; to set interrupt bits
PRTIND DB ? ; use for I/O instructions
DATOFF ENDS

Define code segment
_TEXT SEGMENT BYTE PJBLIC 'CODE'
_TEXT ENDS

Define data segment
-DATA SEGMENT WORD PUBLIC 'DATA'
DATA ENDS

d.

85

CONST SEGMENT WORD PUBLIC 'CONST'
CONST ENDS

_BSS SEGMENT WORD PUBLIC 'BSS'
_BSS iNDS

DGROUP GROUP CONST, _BSS, -DATA

ASSUME CS:_TEXT ,DS: DGROUP, SS: DGROUP, ES: DGROUP

actual data storage

Data segment

_DATA SEGMENT
DB 'INTRW
DD INTRW
DD

DB 3 DUP(O) ; just for alignment

data area for port 1.

PIVAR DB 22 DUP(?)
DW 0
DB OEFH
DB 3

data area for port 2.

P2VAR DB 22 DUP(?)
DW 1
DB OF7H
DB 2

DATA ENDS

Code section

TEXT SEGMENT

Work starts here

PUBLIC INTRW
INTRW PROC NEAR

PUSH BP
MOV BP,SP
PUSH DI
PUSH SI
PUSH DS
PUSH ES

first, find port

MOV CX,[BP+4] ; port number in CX
check port number p

MOV BX,OFFSET DGROUP:PlVAR
CMP CXl
JE DOPRT

- - - - - -- - - - -- - - - -- -- -

86

MOV BX,OFFSET DGROUP:P2VAR
DOPRT:

Save addresses I will need.
; Ready flag

MOV AX,[BP+8]
MOV WORD PTR ADRPNT(BX],AX

* Number of characters found.

MOV AX,[BP+0]
MOV WORD PTR ADRNCH(BX],AX

Status
MOV AX,[BP+12]
MOV WORD PTR ADRST[BX],AX

; now save the buffer address and length of the buffer.
and set up char. pointer

MOV AX,[BP+6]
MOV WORD PTR ADRCHB(BX],AX
MOV WORD PTR PNTSTR[BX],AX
MOV AX,[BP+14]
MOV WORD PTR LENSTR[BX],AX

; Save DS in code segment for interrupt routine since we are
guaranteed nothing except CS when interrupt occurs

MOV WORD PTR CS:SAVEDS,DS

Now I think we have all addresses, etc. set up in useable form.
Initialize pointers, counters, etc.

MOV WORD PTR NCHARS[BX],O
MOV WORD PTR MYST[BX],0
MOV WORD PTR MYFLG[BX],I

Save address of interrupt vector for port.

MOV AH,35H
MOV AL,OCH
SUB AX,PORT[BX]
PUSH BX
INT 21H
NOV AX,BX
POP BX
MOV WORD PTR VECSV[BX],AX
NOV WORD PTR VECSV[BX+2],ES

Now put address of my routine into interrupt vector.

CMP PORT(BX], 0
JE PUTl
MOV DX,OFFSET CM2INT
JMP PUTADR

PUT1: MOV DX,OFFSET CMIINT
PUTADR: MOV AL,OCH

MOV AH,25H
SUB AX,PORT[BX]

87

PUSH DS
PUSH CS
POP DS
INT 21H
POP DS

Talk to the hardware -

MOV DH,PRTIND[BX]

MOV DL,MCR ; Modem Control Register
MOV AL,OBH ; not sure what this
OUT DX,AL is going to do.

MOV DL,RBR ; Receiver Buffer Register
IN AL,DX ; clear out the register S.

IN AL,21H
AND AL,P12INT[BX] ; stores 0 in bit for port
OUT 21H,AL ; and sends to 8259 interrupt controller ;
MOV DL, IER ; Interrupt Enable Register -

MOV AL,01H ; only the data available interrupt
OUT DX,AL

POP ES
POP DS
POP SI
POP DI
MOV SP,BP
POP BP
RET ; I guess that's all

INTRW ENDP

Interrupt routine

CMIINT PROC NEAR

save registers

CLI
PUSH AX
PUSH DS
PUSH DX
PUSH ES %
PUSH DI
PUSH SI
PUSH BX
PUSH CX

NOV DH,3
MOV BX,OFFSET DGROUP:PIVAR
J4P DOINT

for port 2..

CM2INT:
CLI
PUSH AX
PUSH DS
PUSH DX

88

PUSH ES
PUSH DI
PUSH SI
PUSH BX
PUSH CX

MOV DH,2
MOV BX,OFFSET DGROUP:P2VAR

First, check for parity error

DOINT:
MOV DS,WORD PTR CS:SAVEDS ; Restore original DS value
JmP DOINTI

SAVEDS: DW 0 ; Place to tuck DS in code segment
DOINTI: MOV DL,LSR ; Line Status Register

IN AL,DX ; input contents
TEST AL,4 ; test parity
JZ NOER ; If bad,
INC MYST[BX] ; increment status indicator

NOER: MOV DL,RBR ; Receiver Buffer Register
IN AL,DX ; Input character
CMP AL,CARET ; check for <CR>
JE EORCOD ; do not store <CR>
CMP AL, LINFD ; Check for line feed
JE RETINT ; Do not store line feed

increment counter.

MOV CX,NCHARS[BX] ;number of characters in buffer
INC CX ; plus this one

store character in buffer

NEWCHR:
MOV NCHARS(BX],CX
PUSH DS
POP ES
MOV DI,PNTSTR(BX] ; offset address
STOSB ; store the byte
NOV PNTSTR[BX],DI ; and update pointer

check if buffer full.

CMP CX,LENSTR[BX] ; compare with buffer length
JL RETINT ; if less or +< ok.
OR MYST[BX],0100H ; set flag
imP EORCOD ; end-of-record procedure

return code

RETINT:
NOV AL,64H ; signal end of
SUB AX,PORT[BX]
OUT 20H,AL ; interrupt
POP CX
POP BX
POP SI
POP DI

J%

89".

POP ES
POP DX
POP DS
POP AX
STI
IRET

end-of-record procedure

EORCOD:
MOV SI,ADRNCH(BX] ; address of no. of chars.
MOV AX,NCHARS[BX] ; no. of chars. in AX
CMP AX,O
JE RETINT ignore null rec., ie LF only
MOV [SI],AX store no. of chars.

MOV SI,ADRST[BX] ; now do the same for status
MOV AX,MYST(BX]
MOV [SI],AX

MOV SI,ADRPNT[BX] ; and for ready flag/pointer
MOV AX,MYFLG[BX]
MOV [SI],AX

Get ready for next record

NEG MYFLG[BX] ; next pointer will be
ADD NYFLG[BX],3 ; 3 - old value

Pointer
MOV AX,WORD PTR ADRCHB(BX] ; original value in AX
CMP MYFLG(BX],I ; see which part of char. array
JE FLSET
ADD AX,LENSTR[BX] ; for second element

FLSET: MOV PNTSTR(BX],AX ; pointer ready for next record

reset status & no. of characters.

MOV NCHARS(BX],0
MOV MYST(BX],0
MOV AL, XOFF ; Send XOFF
MOV DL,RBR
OUT DX,AL
JmP RETINT ; Finished!

CM1INT ENDP

Termination procedure

PUBLIC ENRUPT
_ENRUPT PROC REAR

PUSH BP
MOV BP,SP
PUSH DI
PUSH SI
PUSH DS
PUSH ES
CLI

* Get port number

90

NOV AX, (BP+4]
NOV BXOFFSET DGROUP:PlVAR
CMP AX,l
JE DOEND
MOV BX,OFFSET DGROUP:P2VAR

Send 0 to Interrupt Enable Register

DOEND:
MOV DH,PRTIND[BX]
MOV DL, IER
MOV AX,0
OUT DX,AL

Interrupt Controller.
IN AL,21H
MOV CL,P12INT[BX]
NOT CL
OR AL,CL
OUT 21H,AL
STI

; Restore interrupt vector

MOV AL,OCH
MOV AH,25H
SUB AX,PORT(BX]
MOV DX,WORD PTR VECSV(BX]
NOV DS,WORD PTR VECSV+2[BXJ
INT 21H

POP ES
POP DS
POP SI
POP DI
MOV SP,BP
POP BP
RET

ENRUPT ENDP
_TEXT ENDS

END

This file has the following functions:
; PRTSET sets up RS232 port

wprt writes one character to port
prnrdy checks printer status

NAME PRTSET

Sets up specified port at specified baud rate.
; Other parameters are:

even parity
7 data bits

* 1 stop bits
; These are coded in DSBIT, below, as follows:

bits 4 3 2 1 0
parity stop bits word length

* v*****] -v %~~;.~;,>--- i

91

xO - one 0 - 1 10 - 7 bits
10 - odd 1 - 2 11 - 8 bits
1- even

Two arguments are:
BAUD baud rate
PORTNO serial port number, 1 or 2

Programmer: Mary M. Hunt
Date: January, 1987

; Originatr: Dick Payne

Specify some constants

SINT EQU 014H S
THR EQU OF8H ; Transmitter Holding Register
LSR EQU OFDH ; Line Status Register
MCR EQU OFCH ; Modem Control Register

DGROUP GROUP _DATA,CONST

CONST SEGMENT WORD PUBLIC 'CONST'

BRATES DW 110
DW 150
DW 300
DW 600
DW 1200
Dw 2400
DW 4800
DW 9600

NBRAT DW 14

DSBIT DW 01AH

CONST ENDS

DATA SEGMENT WORD PUBLIC 'DATA'
DATA ENDS

-TEXT SEGMENT BYTE PUBLIC 'CODE'
ASSUME CS: TEXT,DS:DGROUP
PUBLIC _prtset.

_prtset PROC NEAR

PUSH BP
Nov BP,SP
SUB SP,4

get baud rate in AX .

MOV AX,[BP+4]
NOV BX,0

LOOP:
CMP AX,BRATES(BX]
JE GOTBD
INC BX
INC BX
CNP BX,NBRAT
JG BADRTN

CMP BX NBRA

92 Is

Jimp LOOP

HAVE BAUD RATE. SHIFT 5 BITS LEFT
; (actually only 4 bits because BX is twice

as big as it should be)

GOTBD:
NOV CL,4
SHL BX,CL
MOV AX,BX
OR AX,DSBIT

MOV DX, (BP+6]
SUB DX,1
INT SINT

MOV AX,O

MOV DL,MCR
MOV DH,[BP+6]
CMP DH,2
JE OUTPT
MOV DH,3

OUTPT:
MOV AX,3
OUT DX,AL

RTN:
MOV SP,BP
POP BP
RET

BADRTN:
MOV AX,1
JmP RTN

_prtset ENDP

This function writes one character to the port.
The arguments are:

Sint port RS232 port no. (1 or 2)
char c character to be sent to port 0

No return value.

PUBLIC _wprt
_wprt PROC NEAR

PUSH BP
NOV BPSP

Get port code into DH (3 for port 1, 2 for port 2)

MOV DH,[BP+4]
CMP DH,1
JNE CHKREG
NOV DH,3

CHKREG:

•.IVX0

93 r

MOV DL, LSR
NOTRDY:

IN AL, DX ; wait for
TEST AL, 20H ; register
JZ NOTRDY empty

MOV DL, THR
MOV AX, [BP+6] ; store character in AL
OUT DX,AL ; and output it

MOV SP,BP
POP BP
RET

_wprt ENDP

_TEXT ENDS

-- r

Function prnrdy
Checks to see if printer is ready.
Uses BIOS interrupt 17H.
Returns 0 if printer all ready, or
'8000'X if printer busy. Other values mean off line.

Programmer: Mary M. Hunt

-TEXT SEGMENT BYTE PUBLIC 'CODE'
ASSUME CS: TEXT .1
PUBLIC _prnrdy

_prnrdy PROC NEAR

PUSH BP
MOV BP,SP
MOV AX,0200H
MOV DX,0
INT 17H

XOR AX, 9000H N

MOV BP,SP
POP BP
RET

_prnrdy ENDP
_TEXT ENDS

END
\end

A166.

949

1
'.e .0 N.-P N e ii

° 1
95

C. Management

C.1 FILMAN.COM Program Report

NAME: FILMAN.COM
PURPOSE: To manage WRPROC output files on VAX
MACHINE: VAX
SOURCE LANGUAGE: VAX VMS DCL

DESCRIPTION: The program WRPROC transfers two fies to a VAX disk
each half hour. All the files in a single UTC day bear the same name except for the
version number; the latest consists of all the data for that day through the most
recent half hourly transferral. The last file of the day contains all the day's data,
the others are redundant. For archival purposes we organize the data into weekly
files. The rrogram is submitted to a batch queue to run at 0020 UTC (2020 EDT)
each evening.

The following describes the process for summary files. The same process is used
on the spectral coefficient files, except the names are WRC DAT, not WRS DAT.
FILMAN.COM carries out the following (UTC times and days) daily:

1. Purge previous day's files to leave only last file of the day.

2. Append previous day's file to WRTHSWK.DAT.

3. Submit FILMAN.COM to batch queue to run at 0020 UTC the next day.

At 0020 UTC Saturday morning it also carries out the following:

3. Rename file WRSLSTWK.DAT to WRsyymmdd.DAT where yymmdd is the
date, (870619 is 19 June 1987) of the first day of the file.

4. Rename WRSTHSWK.DAT as WRSLSTWK.DAT.

5. Open the fie WRSTHSWK.DAT with column headers from file WRHEAD.DAT

INPUT:
Input is from three files: Syymmdd.DAT where yymmdd is the date
WRSTHSWK.DAT and WRSLSTWK.DAT.

~0

96

OUTPUT:
Output is three files or an addition to one file depending on
whether it is 0020 UTC Saturday morning or not:

0020 UTC Saturday

WRSTHSWK.DAT Ncw file, column headers only
WRSLSTWK.DAT Previous week's data (previous

WRTHSWK.DAT)
WRSyymmdd.DATA Previous WRSLSTWK.DAT file.

0020 UTC any other day

WRSTHSWK.DAT with previous day's data appended.

USAGE:

FILMAN.COM submits itself to the batch queue for the next day. The log files
must be checked occasionally to make sure an system error has not crashed the
program before resubmission. To resubmit, type:

SUBMIT/N OPRINT/LOGFILE="FILMAN.LOG"/ AFTER="TODAY+ 20:20"

/RESTART/ - QUEUE=QUICK FILMAN.COM

PROGRAMMER: Richard E. Payne
ORIGINATOR: Richard E. Payne
DATE: June 1987

. - ,A- , E,. r d- on . - -

97

C.2 Program

FILMAN .COM

$ SET VERIFY
$!*** Generate yesterday's date. ***
$ DAT - F$CVTIME (,"COMPARISON","DATE")
$!*** Generate core of "S" and "C" file names ***
$ FDAT - F$EXTRACT(2,2,DAT) + F$EXTRACT(5,2,DAT)+F$EXTRACT(8,2,DAT)
$ SHOW SYMBOL FDAT
$!*** Generate name of yesterday's "S" file ***
$ FNAMS = "S" + FDAT + ".DAT"
$ SHOW SYMBOL FNAMS
$ PURGE 'FNAMS' !*** Purge last "S" file ***
$!***Generate name of yesterday's "C" file
$ FNAMC = "C" + FDAT + ".DAT"
$ SHOW SYMBOL FNAMC
$ PURGE 'FNAMC' !*** Purge last "C" file ***
$!*** Add yesterday's "S" file to WRTHSWK.DAT ***
$ COPY WRTHSWK.DAT + 'FNAMS.' WRTHSWK.DAT
$ PURGE WRTHSWK.DAT !*** Purge updated file
$!*** If this is Friday, revise files ***
$ DAY = F$CVTIME ("TODAY", ,"WEEKDAY")

$ SHOW SYMBOL DAY
$ IF DAY .NES. "Friday" THEN GOTO RESUB
$ DAT = F$CVTIME ("TODAY-13-00:00")
$ FDAT = F$EXTRACT(2,2,DAT)+F$EXTRACT(5,2,DAT)+F$EXTRACT(8,2,DAT)
$ SHOW SYMBOL FDAT
$ FNAMWR = "WR" + FDAT + ".DAT"
$ SHOW SYMBOL FNAMWR
$ RENAME WRLSTWK.DAT 'FNAMWR'
$ RENAME WRTHSWK.DAT WRLSTWK.DAT
$ COPY WRHEAD.DAT WRTHSWK.DAT ' Initialize with headers
$ RESUB: !*** Resubmit job for tomorrow
$ SUBMIT/NOPRINT/LOGFILE="FILMAN.LOG"/AFTER="TOMORROW+20:20" -

/RESTART/QUEUE=QUICK FILMAN .COM

V-T ~ ._j W A W-s. Wl, 7w , yw w~ wwv4 -a w

98

C.3 Log File From FILMAN.COM

$ set noverify !stop syslogin.com printing
$ exit !end syslogin.com
$ DIR:= DIR/SIZE/DATE
$ SET TERM! VT100
% SET-W-NOTSET, error iiiodifying BLUE$DRC 1:

-CLI-E-IVDEVTYPE, invalid device type - specify a mailbox device

$ ST132:= SET TERM/WIDTH=132
$ ST80:= SET TERM/WIDTH=80
$ SS132:= SET SCREEN 132
$ SS80:= SET SCREEN 80
$ HOME:= SET DEF PODA:[I33.REP1]
$ TELE :==SET DEE P0DA:[133.TELE]
$ SPK:= SET DEF SPAK:
$ SET VERIFY
$!* * *Generate yesterday's date. **

$ DAT = F$CVTIME (,"COMPARISON","7DATE"I)
$!* * *Generate core of "S" and "C" file nas* * *
$ FDAT = F$EXTRACT(2,2,DAT) + F$EXTRACT(5,2,DAT)±F$EXTRACT(s,2,DAkT)
$ SHOW SYMBOL FDAT

FDAT = "870624"

$!* * *Generate name of yesterday's "S" file *

$ FNAMS = "S" + FDAT + ".DAT"1
$ SHOW SYMBOL FNAMS

FNAMS = "S870624.DAT"

$ PURGE 5870624.DAT * *Purge last "5" fl****
$!*** *Generate name of yesterday's "C" file
$ FNAMC = "1C"1 + FDAT + ".DAT"
$ SHOW SYMBOL FNAMC

FNAMC = "C870624.DAT"

.W VV- .,

99

$ PURGE C870624.DAT *** * Purge last "C" file **

$!* * * Add yesterday's "S" file to WRTHSWK.DAT * * *
$ COPY WRTHSWK.DAT + S870624.DAT WRTHSWK.DAT
$ PURGE WRTHSWK.DAT * • Purge updated file
$!** * If this is Friday, revise files** *

$ DAY = F$CVTIME ("TODAY",,"WEEKDAY")
$ SHOW SYMBOL DAY

DAY = "Wednesday"

$ IF DAY .NES. "Friday" THEN GOTO RESUB
$ RESUB: !* * Resubmit job for tomorrow $

SUBMIT/NOPRINT/LOG FILE="FILMAN.LOG" /AFTER="TOM ORROW+20:20"

/RESTART/QUEUE=QUICK FILMAN.COM Job FILMAN (queue
RED-QUICK, entry
947) holding until 25-JUN-1987 20:20

0.1777 C.U. USED

$ set noverify 11

133-REP1 job terminated at 24-JUN-1987 20:20:09.55

Accounting information: Buffered I/O count: 193 Peak
working set size: 571 Direct I/O count: 270 Peak
page file size: 2035 Page faults: 3780 Mounted

volumes: 0

Charged CPU time: 0 00:00:02.68 Elapsed time: 0 00:00:17.64

I
, :I

100

D. Data Dissemination

D.1 TELECHUZ Program Report

NAME: TELECHUZ
TYPE: Main program
PURPOSE: To enable unsophisticated users to access telemetered data

conveniently.
MACHINE: VAX
SOURCE LANGUAGE: FORTRAN
DESCRIPTION: TELECHUZ allows the user to choose data source, time period

covered, and whether to display the data one screen (20 lines)
at a time or to scroll through the whole file through a set of
menus on the terminal screen. Appendix D.2 is a diagram
of the menu structure. A present there is only one data set
available, wave data from a Waverider buoy on a mooring at the
Buoy Farm a few miles out of Martha's Vineyard but the menus
are set up for other data sets expected to be available in
1988. It is eminently expandable can something be done about
the May in here.

INPUT:

Input is from files on any disk drive on the WHOI DECNET. A naming convention
must be adopted so that TELECHUZ can determine appropriate file names at any
time. The user does, not have to know the filename, as TELECHUZ automatically
accesses the connect file, according to the menu choice.

For the Waverider data, TELECHUZ can access one of three summary files:

SYYMMDD.DAT The current day's data, i.e., that acquired since
OOOOUTC of the current day. YY is year (last two
digits). MM and DD are month and day. Example is
S870610.DAT for 10 June 1987.

WRSTHSWK.dat The current weeks's data or the data accumulated
since OOOOUTC on the previous Saturday.

WRLSTWK.DAT The previous week's data, starting at OOOOUTC on
the previous Saturday.

The spectral coefficient files can also be accesed with TELECHUZ. In the naming
convention, the S for summary is replaced by C for coefficient.

I

101

OUTPUT:

The program lists data by the screen or by the file, user's menu option. As presently
configured for the Waverider data, the user can get 20 lines at a time with the
program waiting for a <CR> before sending the next 20 lines, or he can have
the whole file sent with no interruptions. The latter option is included for users
who wish to capture the file on a PC. Both options have column headers. An
additional option is for a screen which describes the parameters in the data files.
The last parameter in each Waverider record, the frequency of the spectral peak, is
converted to a period before being transmitted to the terminal.

0

USAGE:

Dialing the WHOI Red VAX (from inside the Institution, extension 6800 for 300/1200
baud Vadic modems, or extension 6815 for 300/1200 baud Bell modems) connects
the user to the Institution PACX. From a telephone outside the Institution, (617)
540-6000 is a direct line to the PACX. Typing <CR> gets the PACX prompt. Ap-
pendix D.3 is an example of a TELECHUZ session which will illustrate the initial
commands required by the Institution computer system. The password for this
account can be obtained from any of the authors of this report. Note that the
Password is not echoed to the user and does not appear on his screen. Menus and
prompts will lead the user the program.

For security purposes, the VAX account has been set up with CTRL Y, CTRL
C disabled. A logon file in the account puts the user immediately into the program.
He cannot leave the program without logging himself off. With these safeguards
the user has access only to files available through TELECHUZ.

SUBPROGRAMS USED:

File Description
BUOYFARM.FOR Provides menu for three categories of Waverider data, ,'

current day, current week, previous week.
WRDAT.FOR Provides access to the Waverider files.
BERMUDA.FOR Dummy subroutine until data are available.
OCEANUS.FOR Dummy subroutine until data are available.
BUOYDATA.FOR Dummy subroutine until data are available.

PROGRAMMER: Richard E. Payne
ORIGINATOR: Melbourne Briscoe
DATE: June 1987

-0

o!.

101 a

D.la Flow Diagram

a)a

N (

LI

0

-J- wc

00

--------I

102

D.2 Sample TELECHUZ Session

enter class: RED
class red start

Username: 133-TELE

Password:

WHOI RED system

Last interactive login on Friday, 12-JUN-1987 15:06

WELCOME TO

URIP TELEMETERED DATA

You will be guided through the latest
telemetered data by a system of menus

Please type your name
REP

FIRST LEVEL MENU

1. Buoy Farm Wave Rider data (start May 1987)
2. Bermuda data (not yet available)
3. Oceanus data (not yet available)
4. Buoy data (not yet available)
5. Logoff

Please enter desired item number followed by a <CR>...
1

DATA CATEGORIES FOR BUOY FARM WAVE RIDER DATA

0. Format explanation
1. Current 24 Hours
2. Current week
3. Previous week
4. Return to previous menu

For earlier data, contact R.Payne at 617-548-1400 ext 2550.
Please type desired item number followed by a <CR>...0

WAVERIDER DATA

103

UTC TIME-In hours, minutes. Subtract 4 hours for EDT
VARIANCE-Total variance of sea height after removing mean, in m**2

zeroth moment of spectrum, MO
SIG WAVE HEIGHT-4*SQRT(VARIANCE), in meters
MEAN WAVE PERIOD-MO/MI, in seconds
UPCROSS WAVE PERIOD-Zero upcrossing period=, SQRT(MO/M2), in seconds
WAVERIDER BIAS-Mean of all 2048 sea heights in data set, in meters
MAX CREST-Maximum sea height in data set, mean removed, in meters
MIN TROUGH-Minimum sea height in data set, mean removed, in meters
SPECTRAL PEAK PERIOD-Period of largest spectral component, in seconds

Type <CR> to return to menu

DATA CATEGORIES FOR BUOY FARM WAVE RIDER DATA

0. Format explanation
1. Current 24 Hours
2. Current week
3. Previous week
4. Return to previous menu

For earlier data, contact R.Payne at 617-548-1400 ext 2550.
Please type desired item number followed by a <CR>...

2
For prompted listing of file, type "1"<CR>
For uninterrupted listing (dump to PC), type "2"<CR>
File ID for you to copy from to another account is

PODA:EI33.REPI]WRTHSWK.DAT
1

For first 20 lines of data, type <CR>. Type "E"<CR> to return to
previous menu.

SIG MEAN UPCROSS WAVE SPECTRAL
UTC VAR- WAVE WAVE WAVE RIDER MAX MIN PEAK

DATE TIME IANCE HEIGHT PERIOD PERIOD BIAS CREST TROUGH PERIOD
870606 0 0.030 0.690 6.039 5.386 0.411 0.910 -1.011 7.09
870606 30 0.037 0.771 5.701 4.913 0.412 1.353 -1.711 7.52
870606 100 0.036 0.763 5.698 4.873 0.360 0.967 -1.208 6.76
870606 130 0.043 0.825 5.600 4.866 0.401 0.995 -1.149 7.52
870606 200 0.049 0.883 4.711 4.099 0.371 1.239 -1.839 7.52
870606 230 0.036 0.756 4.866 4.257 0.402 1.175 -1.232 7.09
870606 300 0.041 0.805 5.363 4.584 0.398 1.104 -1.437 6.41

ril II Soili~ -

104
,6-

870606 330 0.031 0.701 4.892 4.227 0.404 1.026 -1.380 6.41 I
870606 400 0.027 0.663 5.117 4.549 0.396 0.601 -0.571 5.81
870606 430 0.031 0.705 5.241 4.598 0.391 0.809 -0.647 8.00
870606 500 0.029 0.685 4.882 4.332 0.395 0.693 -0.683 7.09
870606 530 0.028 0.667 4.638 4.066 0.396 0.795 -0.645 6.76
870606 600 0.028 0.668 4.496 3.939 0.397 0.709 -0.566 6.10
870606 630 0.029 0.687 4.834 4.176 0.396 0.703 -0.887 7.09
870606 700 0.028 0.666 4.561 3.972 0.391 0.814 -0.736 6.10
870606 730 0.025 0.635 4.368 3.883 0.393 0.656 -0.619 5.81
870606 800 0.027 0.653 4.682 4.132 0.386 0.680 -0.658 6.41
870606 830 0.023 0.613 4.785 4.215 0.391 0.765 -0.584 7.09
870606 900 0.021 0.579 4.720 4.170 0.387 0.669 -0.580 7.09 p
870606 930 0.020 0.563 4.805 4.236 0.387 0.672 -0.534 8.55

Type <CR> for next 20 lines of data, E <CR> to return to previous
menu.

E
Returning you to previous menu.

DATA CATEGORIES FOR BUOY FARM WAVE RIDER DATA .'.

0. Format explanation
1. Current 24 Hours
2. Current week
3. Previous week
4. Return to previous menu

For earlier data, contact R.Payne at 617-548-1400 ext 2550.
Please type desired item number followed by a <CR>...

4

FIRST LEVEL MENU
1. Buoy Farm Wave Rider data (start May 1987)
2. Bermuda data (not yet available)
3. Oceanus data (not yet available)
4. Buoy data (not yet available)
5. Logoff

Please enter desired item number followed by a <CR>...
5
Please wait for the 2 line VAX logoff message before hanging up.

Thank you.
0.1477 C.U. USED

133-TELE finished at 12-JUN-1987 16:10:29.42

Nt

:%' ' " '-" ' ' , 'K " '" X,"','<"'/' "' V: , '", ',' '' "/2'.€%¢'a

* . '~~a \' _ N.. " , ./ ,^ . _ .

103-

D.3 Program

C TELECHUZ.FOR
C R.E.Payne 13 February 1987

C TELECHUZ provides access to telemetry data from an account on the
C Red VAX. It is expandable through subroutines to allow any number
C of channels and levels.
C 23 Jun 87 - Added exit from any menu.

C LINK TELECHUZ,BUOYFARM,WRDAT,BERMUDA,OCEANUS,BUOYDATA

C***Type specification statements***
INTEGER*2 IEND
CHARACTER CHUZ*12,NAME*32,DMY*9,HMS*8

C***Write initial screen***
WRITE (6,1000)

C***WriAe first level menu***
100 CONTINUE

READ (5,1020) NAME
OPEN (UNIT=1,FILE='[133.REP1]USERS.DOC',STATUS='OLD',
& ACCESS='APPEND')
CALL DATE (DMY) f
CALL TIME (HMS)
WRITE (1,1050) NAME,HMS,DMY

CLOSE (UNIT=I,STATUS='KEEP')
150 CONTINUE •

1END = 0
WRITE (6,1100)

200 CONTINUE
READ (5,1150) CHUZ

C***CHUZ is channel choice on first level***
IF (CHUZ.EQ.'1') THEN •

CALL BUOYFARM (1END)
ELSEIF (CHUZ.EQ.'2') THEN

CALL BERMUDA.(IEND)
ELSEIF (CHUZ.EQ.'3') THEN

CALL OCEANUS (1END)
ELSEIF (CHUZ.EQ.'4') THEN

CALL BUOYDATA (1END)
ELSEIF (CHUZ.EQ.'5') THEN

IEND =1
ELSE

WRITE (6,1200) CHUZ
GOTO 200

ENDIF

%

106

IF (IEND.EQ.0) THEN
GOTO 150

ENDIF
C***Exeunt***

998 CONTINUE
WRITE (6,1300)

C***Format statments***
1000 FORMAT (/,' **

& 20X,'WELCOME TO',/,
& 16X,'URIP TELEMETERED DATA',/,
& 8X,'You will be guided through the latest',/,
& 8X,'telemetered data by a system of menus',//,
& 8X,'Please type your name')

1020 FORMAT (A32)
1050 FORMAT (4X,A32,2X,A9,2X,A8)
1100 FORMAT (/,' ***'

& '************* ',//,

& 20X,'FIRST LEVEL MENU',/,
& 8X,'1. Buoy Farm Wave Rider data (start May 1987)',/,
& 8x,'2. Bermuda data (not yet available)',/,
& 8x,'3. Oceanus data (not yet available)',/,
& 8x,'4. Buoy data (not yet available)',/,
& 8x,'5. Logoff',//,
& 5x,'Please enter desired item number followed ',

& 'by a <CR>... ')
1150 FORMAT (A12)
1200 FORMAT (' I understood you to type ',A12,'. Please retype '

& 'choice, "1" to "5"')
1300 FORMAT (' Please wait for the 2 line VAX lo-off message',

& ' before hanging up. Thank you.')
END

SUBROUTINE BUOYFARM (IEND)
C R.E.Payne 13 February 1987

C BUOYFARM contains a menu for choosing to access the three-''
C categories of Buoy Farm Wave Rider data, current day, current ""
C week, previous week.
C MODIFICATIONS:
C 7 May 87 - Add computed file name for today's data.
C 12 Jun 87 - Added 0 category to menu to explain data.

C***Type specification statements***
INTEGER*2 Y,M,D,IEND
REAL*4 RDATE

-X 6-4 I. w4.% -'-74 VV~ - S

10j,,

CHARACTER CHUZ*12,INFILE*26,S*l,SUF*3
C***Initialization***

S =)S)

SUF = 'DAT'
IEND = 0

C***Write menu screen***
C 0 - Print explanation screen
C 1 - Access today's data file
C 2 - Access WRTHSWK.DAT
C 3 - Access WRLSTWK.DAT
C 4 - Return to previous screen
C 5 - Exit program

100 CONTINUE
WRITE (6,1000)

200 CONTINUE
READ (5,1050) CHUZ
IF (CHUZ.EQ.'0') THEN

WRITE (6,1075)
READ (5,1050)
GOTO 100

ELSEIF (CHUZ.EQ.'1') THEN
CALL IDATE (M,D,Y)
RDATE = REAL(D) + 100.*REAL(M) + 10000.*REAL(Y)
WRITE (INFILE,1200) S,RDATE,SUF
INFILE = 'PODA:[133.REP1]'//INFILE
CALL WRDAT (INFILE)

ELSEIF (CHUZ.EQ.'2') THEN
INFILE = 'PODA:[I33.REP1]WRTHSWK.DAT'
CALL WRDAT (INFILE)

ELSEIF (CHUZ.EQ.'3') THEN
INFILE = 'PODA:[I33.REP1]WRLSTWK.DAT'
CALL WRDAT (INFILE)

ELSEIF (CHUZ.EQ.'4') THEN
RETURN

ELSEIF (CHUZ.EQ.'5') THEN
1END = 1 k
RETURN

ELSE
WRITE (6,1100) CHUZ
GCTO 200

ENDIF
GOTO 100

C***Format statements***
1000 FORMAT (' ***' ,

k C***********A,//,
& 8X,'DATA CATEGORIES FOR BUOY FARM WAVE RIDER DATA',!!,

108

& 8X,'0. Format explanation',/,
& 8X,'1. Current 24 Hours',/,
k 8X,'2. Current week',/,
& 8X,'3. Previous week',/,
& 8X,'4. Return to previous menu',/,
& 8X,'5. Exit program.',//,
& 5X,'For earlier data, contact R.Payne at 617-548-1400',
& ' ext 2550.',/,
& 5X,'Please type desired item number followed ',

& 'by a <CR>... ')
1050 FORMAT (Al)
1075 FORMAT (' WAVERIDER DATA',/,

& ' UTC TIME-In hours, minutes. Subtract 4 hours for EDT',/,
& ' VARIANCE-Total variance of sea height after removing',
& ' mean, in m**2',/,
& ' zeroth moment of spectrum, MO',/,
& ' SIG WAVE HEIGHT-4*SQRT(VARIANCE), in meters',/,
& ' MEAN WAVE PERIOD-MO/M1, in seconds',/,
& ' UPCROSS WAVE PERIOD-Zero upcrossing period ',

& ' SQRT(MO/M2), in seconds',!,
& ' WAVERIDER BIAS-Mean of all 2048 sea heights in dat' ',
& ' set, in meters',/,
& ' MAX CREST-Maximum sea height in data set, mean',
& ' removed, in meters',/,
& ' MIN TROUGH-Minimum sea height in data set, mean',
& ' removed, in meters',/,
& ' SPECTRAL PEAK PERIOD-Period of largest spectral',
& ' component, in seconds',/,
& , ,!, '

& 'Type <CR> to return to menu')
1100 FORMAT (' I understood you to type ',A12,'. Please retype ',

& 'choice, "1" to "4"')
1200 FORMAT (AI,F7.0,A3)

END

SUBROUTINE WRDAT (INFILE)
C R.E.Payne 17 February 1987

C WRDAT displays Wave Rider data file. 0
C MODIFICATIONS:
C 7 May 87 - Changed to format of actual data.
C 20 May 87 - Changed column headers
C 8 Jun 87 - Added discard of input file headers h

C 12 Jun 87 - Added inversion of last parameter in each record
C 23 Jun 87 - Changed termination at end of data file.

*********************************.*******

109

C***Type specification statements
INTEGER* 2 NUNHEAD, ERR
INTEGER*4 IV1(25),IV2(25)
REAL*4 RV1(25),RV2(25),RV3(25),RV4(25),RV5(25),

& RV6(25) ,RV7(25),RV8(25)
CHARACTER INFILE*26,CHUZ*12,CR*I
CHARACTER*80 HEADER(3),REC

C***Initialization***
OPEN (UNIT=1,FILE=INFILE,STATUS='OLD',ERR=500,

& IOSTAT=IERR,READONLY)
C Read and discard header records for this or last week's file

IF (INFILE.EQ.'PODA:[I33.REP1]WRTHSWK.DAT') THEN
READ (1,1000)(HEADER(I),I=1,3)
ELSEIF (INFILE.EQ.'PODA:[I33.REP1]WRLSTWK.DAT') THEN
READ (1,1000)(HEADER(I),I=1,3)

ENDIF
C***Inquire for file transfer or conducted listing***

WRITE (6,1200) INFILE
50 CONTINUE

READ (5,1300) CHUZ
CALL STR$UPCASE (CHUZ,CHUZ)

C***Test for output mode***
C***Guided listing of data file***

IF (CHUZ.EQ.'1') THEN
WRITE (6,2050)
WRITE (6,2000)
READ (5,2300) CR
CALL STR$UPCASE (CR,CR)
IF (CR.EQ.'E') THEN
CLOSE (UNIT=1,STATUS='KEEP')
RETURN

ENDIF
C Read 20 data records and invert last variable

110 CONTINUE
N=0
DO 120 I=1,20
READ (1,*,END=130) IV1(I),IV2(I),RV1(I),RV2(I),

& RV3(I),RV4(I),RV5(I),RV6(I),RV7(I),RV8(I)
RV8(I) = 1./RV8(I)
N= I

120 CONTINUE
130 CONTINUE

C***Test if this is end of data
C If no records were read, terminate

IF (N.EQ.0) THEN
WRITE (6,2100)

110

CLOSE (UNIT=I,STATUS='KEEP')
RETURN

ENDIF
C Otherwise, write N records with header

WRITE (6,2600)
WRITE (6,1100)(IV1(I),IV2(I),RVI(I),RV2(I),RV3(I),

& RV4(I),RV5(I),RV6(I),RV7(I),RV8(I),I-I,N)
C If N < 20, write message, terminate

IF (N.LT.20) THEN
WRITE (6,2100)
READ (5,2300) CR
CLOSE (UNIT=1,STATUS-'KEEP')
RETURN

C If N = 20, prompt for further action
ELSEIF (N.EQ.20) THEN

C Prompt for more data
WRITE (6,2200)
READ (5,2300) CR
CALL STR$UPCASE (CR,CR)

C If space bar, then read next N lines
IF (CR.EQ.'E') THEN
WRITE (6,2400)
CLOSE (UNIT=i,STATUS='KEEP')
RETURN
ELSE
GOTO 110

ENDIF
ENDIF

C***File transfer to terminal***
ELSEIF (CHUZ.EQ.'2') THEN

WRITE (6,2600)
DO 200 I=1,1000
READ (1,*,END-210) IVI(1),IV2(1),RV1(1),RV2(1),RV3(1),

k RV4(1),RV5(1),RV6(1),RV7(l),RV8(1)
RV8(1) - 1./RV8(1)
WRITE (6,1100) IV1(1),IV2(1),RVI(1),RV2(1),RV3(1),

& RV4(1),RV5(1),RV6(1),RV7(1),RV8(1)
200 CONTINUE
210 CONTINUE 0

WRITE (6,2100)
READ (5,2300) CR
CLOSE (UNIT-I,STATUS='KEEP')
RETURN

ELSE S
WRITE (6,1400) CHUZ

GOTO 50
ENDIF

C***Error in OPEN of input file***
500 CONTINUE

WRITE (6,2500) IERR
RETURN

C***Format statements***
1000 FORMAT (A77)
1100 FORMAT (2X,I6,2X,I4,2X,F5.3,2X,F5.3,2X,F5.3,2X,F5.3,

& 2X,F5.3,2X,F5.3,2X,F6.3,2X,F5.2)
1200 FORMAT (' For prompted listing of file, type "1"<CR>',/,

& ' For uninterrupted listing (dump to PC), type "2"<CR>',/,
& ' File ID for you to copy from to another account is ',I,
& 6X,A32)

1300 FORMAT (A12)
1400 FORMAT (' I understood you to type ',A12,

& 'Please retype choice, "1" or "2"')
2000 FORMAT (/,' For first 20 lines of data, type <CR>.',

& ' Type "E"<CR> to return to previous menu.
2050 FORMAT *

& '***********',/

2100 FORMAT (' End of data, type <CR> to return',
& to previous menu.')

2200 FORMAT (' For next 20 lines of data, type <CR>.',
& ' Type E <CR> to return to previous menu.

2300 FORMAT (Al)
2400 FORMAT (' Returning you to previous menu.',/)
2500 FORMAT C' No data in that file. Returning you to',

& ' previous menu. IERR=',I5,/) 0
2600 FORMAT (17X,' SIG MEAN UPCROSS WAVE',

& ' SPECTRAL',/,

& 11X,'UTC VAR- WAVE WAVE WAVE RIDER',
& MAX MIN PEAK',/,
& ' DATE TIME IANCE HEIGHT PERIOD PERIOD BIAS',
& ' CREST TROUGH PERIOD')

END

SUBROUTINE BERMUDA (LEND) .-

C R.E.Payne 13 February 1987

C BERMUDA contains a menu for choosing to access the categories of
C Bermuda data.

C***Type specification statements***
INTEGER*2 CHUZ,IEND

C***Initialization***

.. -I

112

1END = 0
C***Write comment***

WRITE (6,1000)
RETURN

C***Format statements***
1000 FORMAT (' There is no Bermuda data yet. We expect it to '

& 'start on about June ?',/,
& ' You will now be returned to the previous menu.')

END

SUBROUTINE OCEANUS (IEND)
C R.E.Payne 13 February 1987

C OCEANUS contains a menu for choosing to access the categories of
C Oceanus data.

C***Type specification statements***

INTEGER*2 CHUZ,IEND
C***Initialization***

IEND = 0
C***Write comment***

WRITE (6,1000)
RETURN

C***Format statements***
1000 FORMAT (' There is no Oceanus data yet. We expect it to ',

& 'start on about June ?',/,
& ' You will now be returned to the previous menu.')
END

SUBROUTINE BUOYDATA (IEND)
C R.E.Payne 13 February 1987

C BUOYDATA contains a menu for choosing to access the categories of
C BUOYDATA data.

C***Type specification statements***

INTEGER*2 CHUZ,IEND
C***Initialization***

lEND = 0
C***Write comment***

WRITE (6,1000)
RETURN

C***Format statements***
1000 FORMAT (' There is no buoy data yet. We expect it to start',

& ' on about October ?',/,

TAJM ' P%. 10--'1A F . *-, .7 % 1 OA &I)L1

& 'You will now be returned to the previous menu.')
END

113.

I

DOCUMENT LIBRARY
August 21. 1987

Distribution List for Technical Report Exchange

Attn: Stella Sanchez-Wade Director, Ralph M. Parsons Laboratory
Documents Section Room 48-311 b
Scripps Institution of Oceanography MIT
Library, Mail Code C-075C Cambridge, MA 02139
La Jolla, CA 92093 Marine Resources Information Center

Hancock Library of Biology & Building E38-320
Oceanography MIT

Alan Hancock Laboratory Cambrid,_e, MA 02139
University of Southern California Libra
University Park Lamont-Doherty Geological
Los Angeles, CA 90089-0371 Observatory

Gifts & Exchanges Colombia University
Library Palisades, NY 10964
Bedford Institute of Oceanography Libray
P.O. Box 1006 Serials Department
Dartmouth, NS, B2Y 4A2, CANADA Oregon State University

Office of the International Corvallis, OR 97331
Ice Patrol Pell Marine Science Library

c/o Coast Guard R & D Center University of Rhode Island
Avery Point Narragansett Bay Campus
Groton, CT 06340 Narragansett, RI 02882

Library Working Collection
Physical Oceanographic Laboratory Texas A&M University
Nova University Dept. of Unography
8000 N. Ocean Drive Dept. of Oceanography
Dania, FL 33304 Colege Station, TX 77843

NOAA/EDIS Miami Library Center Library
4301 Rickenbacker Causeway Virginia Institute of Marine Science
Miami, FL 33149 Gloucester Point, VA 23062

Library Fisheries-Oceanography Library
Skidaway Institute of Oceanography 151 Oceanography Teaching Bldg.
P.O. Box 13687 University of Washington
Savannah, GA 31416 Seattle, WA 98195

Institute of Geophysics Library .-
University of Hawaii R.S.M.A.S.
Library Room 252 University of Miami z
2525 Correa Road 4600 Rickenbacker Causeway II
Honolulu, HI 96822 Miami, FL 33149

Library Maury Oceanographic Library
Chesapeake Bay Institute Naval Oceanographic Office
4800 Atwell Road Bay St. Louis
Shady Side, MD 20876 NSTL, MS 39522-5001 I
MIT Librariesi

Serial Journal Room 14E-210
Cambridge, MA 02139

i%
Ize

50272-101

REPORT D)CUMENTAJON [1. REPORT NO. 2. 3. Recipient's Accession No.

.AGE WHOI-88-15
4. Title and Subtitle 5. Report Date

Surface-Wave Data Acquisition and Dissemination by VHF Packet Radio and Computer April 1988

Networking 6"

7. Author(s) 8. Performing Organization Rapt. No.
M. Briscoe, E. Denton, D. Frye, M. Hunt, E. Montgomery, and R. Payne WHOI-88-15

9. Performing Organization Name and Address 10. Project/Tsk/Work Unit No.

The Woods Hole Oceanographic Institution
Woods Hole, Massachusetts 02543 11. Contrat(e) or Grant(G) No.

(C N00014-86-K-0751

12. Sponsoring Organization Name and Addree 13. Type of Report & Period Covered

The Office of Naval Research Technical Report
Environmental Sciences Directorate
Arlington, Virginia 22217 14.

15. Supplementary Notes

This report should be cited as: Woods Hole Oceanog. Inst. Tech. Rept., WHOI-88-15.

16. Abstract (Umit: 200 words)

Waverider buoy data are normally transmitted on a 27 MHz analog radio link to a shore station a few miles away, where the buoy data
are plotted on a paper strip-chart recorder or logged digitally for later computer processing.

Instead, we constructed a relay station on Martha's Vineyard island that retransmits the received Waverider data over a digital, 148
MHz packet-radio link to a personal computer in our laboratory on Cape Cod, where the data are edited, processed, spectrally analyzed,
and then sent over an Ethernet line to our Institution mainframe computer for archiving. Telephone modem access of a special wave-
data file on the mainframe permits unattended data dissemination to the public.

The report describes the entire system including Waverider buoy mooring hardware, computer programs, and equipment.

The purpose of the project was to learn what difficulties are involved in the automated acquisition and dissemination of telemetere'l
oceanographic data, and to gain experience with packet radio techniques. Although secondary to these purposes, the long-term surface-
wave monitoring off the southwest shore of Martha's Vineyard has its own scientific, engineering, and environmental benefits. 0

17. Document Analysis a. Descriptors

1. Radio frequency data telemetry
2. Packet radio
3. Automated acquisition and dissemination

b. Idntlflers00ponEnded Tenm

c. COSATI Fieldoroup

1. Availability Statement 19. Security Class (This Report) 21. No. of Pages

Approved for publication; distribution unlimited. UNCLASSIFIED 113
20. Security Class (This Page) 22. Price

(See ANSIZ3&-1) Se Inhtructions on Revese" OPTIONAL FORM 272 (4-77) 0
(Formerty NTIS-35)
Department of Commerce

.V ~~w-~* V,' ~ ~ -*

- -

\ %A, *-%N.-*/ * e

